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ABSTRACT 

 

Code smells indicate poor implementation choices that may hinder the system 

maintenance. Their detection is important for the software quality improvement, but 

studies suggest that it should be tailored to the perception of each developer. Therefore, 

detection techniques must adapt their strategies to the developer‘s perception. Machine 

Learning (ML) algorithms is a promising way to customize the smell detection, but there 

is a lack of studies on their accuracy in detecting smells for different developers. This 

paper evaluates the use of ML algorithms on detecting code smells for different 

developers, considering their individual perception about code smells.The results show 

that ML-algorithms achieved low accuracies for the developers that participated of our 

study, showing that are very sensitive to the smell type and the developer. These 

algorithms are not able to learn with limited training set, an important limitation when 

dealing with diverse perceptions about code smells. 
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                                            CHAPTER 1 

                                            INTRODUCTION 

 

Nowadays, the complexity of software systems is growing fast and software 

companies are required to continuously update their source code. Those continuous 

changes frequently occur under time pressure and lead developers to set aside good 

programming practices and principles in order to deliver the most appropriate but still 

immature product in the shortest time possible. This process can often result in the 

introduction of so-called technical debt  design problems likely to have negative 

consequences during the system maintenance and evolution.  

To overcome these limitations, machine-learning (ML) techniques are being adopted to 

detect code smells. Usually a supervised method is exploited, i.e., a set of independent 

variables (a.k.a. predictors) are used to determine the value of a dependent variable 

(i.e., presence of a smell or degree of the smelliness of a code element) using a 

machine-learning classifier (e.g., Logistic Regression).  

In order to empirically assess the actual capabilities of ML techniques for code smell 

detection, Arcelli Fontana et al.conducted a large-scale study where 32 different ML 

algorithms were applied to detect four code smell types, i.e., Data Class, Large Class, 

Feature Envy and Long Method. The authors reported that most of the classifiers 

exceeded 95% both in terms of accuracy and of F-Measure, with J48 and RANDOM 

FOREST obtaining the best performance. The authors see in these results an indication 

that ―using machine learning algorithms for code smell detection is an appropriate 

approach‖ and that ―performances are already so good that we think it does not really 

matter in practice what machine learning algorithm one chooses for code smell 

detection‖.  

In our research, we have observed important limitations of the work by Arcelli Fontana 

et al. that might affect the generalizability of their findings. Specifically, the high 

performance reported might be due to the way the dataset was constructed: for each 

type of code smell analyzed, the dataset contains only instances affected by this type of 

smell or non-smelly instances, with a non-realistic balance of smelly and non-smelly 

instances and a strongly different distribution of the metrics between the two groups of 
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instances, which is far from reality.  During software maintenance and evolution, 

software systems need to be continuously changed by developers in order to (i) 

implement new requirements, (ii) enhance existing features, or (iii) fix important bugs. 

Due to time pressure or community-related factors, developers do not always have the 

time or the willingness to keep the complexity of the system under control and find good 

design solutions before applying their modifications. As a consequence, the 

development activities are often performed in an undisciplined manner, and have the 

effect to erode the original design of the system by introducing the so-called technical 

debt. Code smells, i.e., symptoms of the presence of poor design or implementation 

choices in the source code, represent one of the most serious forms of technical debt. 

Indeed, previous research found that not only they strongly reduce the ability of 

developers to comprehend the source 2code, but also make the affected classes more 

change- and fault-prone. Thus, they represent an important threat for maintainability 

effort and costs.  

In past and recent years, the research community was highly active on the topic. On the 

one hand, many empirical studies have been conducted with the aim of understanding 

(i) when and why code smells are introduced, (ii) what is their evolution and longevity in 

software projects, and (iii) to what extent they are relevant for developers. On the other 

hand, several code smell detectors have been proposed as well. Most of them can be 

considered as heuristics-based: they apply a two-step process where a set of metrics 

are firstly computed, and then some thresholds are applied upon such metrics to 

discriminate between smelly and non-smelly classes.  

They differ from each other for (i) the specific algorithms used to identify code smells 

(e.g., a combination of metrics or through the use of more advanced methodologies like 

Relational Topic Modeling) and (ii) the metrics exploited (e.g., based on code metrics or 

historical data). Although it has been showed that such detectors have reasonable 

performance in terms of accuracy of the recommendations, previous works highlighted 

a number of important limitations that might preclude the use of such detectors in 

practice.  

In particular, code smells identified by existing detectors can be subjectively interpreted 

by developers. At the same time, the agreement between them is low. More importantly, 
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most of them require the specification of thresholds to distinguish smelly code 

components from non-smelly one: naturally, the selection of thresholds strongly 

influence their accuracy. For all these reasons, a recent trend is the adoption of 

Machine Learning (ML) techniques for approaching the problem.  

In this scenario, a supervised method is exploited: a set of independent variables 

(a.k.a., predictors) are used to predict the value of a dependent variable (i.e., the 

smelliness of a class) using a machine learning classifier (e.g., Logistic Regression). 

The model can be trained using a sufficiently large amount of data available from the 

project under analysis, i.e., within-project strategy, or using data coming from other 

(similar) software projects, i.e., cross-project strategy. These approaches clearly differ 

from the heuristics-based ones, as they rely on classifiers to discriminate the smelliness 

of classes rather than on predefined thresholds upon computed metrics. 
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                                      CHAPTER 2 

                               LITERATURE SURVEY 

2.1. Detecting Code Smells using Machine Learning Techniques 

ABSTRACT: 

Code smells are symptoms of poor design and implementation choices weighing 

heavily on the quality of produced source code. During the last decades several code 

smell detection tools have been proposed. However, the literature shows that the 

results of these tools can be subjective and are intrinsically tied to the nature and 

approach of the detection.  

In a recent work the use of Machine-Learning (ML) techniques for code smell detection 

has been proposed, possibly solving the issue of tool subjectivity giving to a learner the 

ability to discern between smelly and non-smelly source code elements. While this work 

opened a new perspective for code smell detection, it only considered the case where 

instances affected by a single type smell are contained in each dataset used to train 

and test the machine learners. In this work we replicate the study with a different 

dataset configuration containing instances of more than one type of smell. The results 

reveal that with this configuration the machine learning techniques reveal critical 

limitations in the state of the art which deserve further research. Index Terms—Code 

Smells; Machine Learning; Empirical Studies; Replication Study . 

 

THE REFERENCE WORK  

In the authors analyze three main aspects related to the use of machine-learning 

algorithms for code smell detection: (i) performance of a set of classifiers over a sample 

of the total instances contained in the dataset, (ii) analysis of the minimum training set 

size needed to accurately detect code smells, and (iii) analysis of the number of code 

smells detected by different classifiers over the entire dataset.  

In this paper, we focus on the first research question of the reference work. In the 

following subsections we detail the methodological process adopted in  

A. Context Selection  
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The context of the study was composed of software systems and code smells. The 

authors have analyzed systems from the Qualitas Corpus, release 20120401r, one of 

the largest curated benchmark datasets to date, specially designed for empirical 

software engineering research. Among 111 Java systems of the corpus, 37 were 

discarded because they could not be compiled and therefore code smell detection could 

not be applied. Hence, the authors focused on the remaining 74 systems. For each 

system 61 source code metrics were computed at class level and 82—at method level. 

The former were used as independent variables for predicting class-level smells Data 

Class and God Class, the latter for predicting method-level smells Feature Envy and 

Long Method:  

God Class.  

It arises when a source code class implements more than one responsibility; it is usually 

characterized by a large number of attributes and methods, and has several 

dependencies with other classes of the system.  

Data Class.  

This smell refers to classes that store data without providing complex functionality.  

Feature Envy.  

This is a method-level code smell that appears when a method uses much more data 

than another class with respect to the one it is actually inLong Method. It represents a 

large method that implements more than one function. The choice of these smells is 

due to the fact that they capture different design issues, e.g., large classes or misplaced 

methods.  

B. Machine Learning Techniques Experimented  

In six basic ML techniques have been evaluated: J48, JRIP, RANDOM FOREST, 

NAIVE BAYES, SMO, and LIBSVM. As for J48, the three types of pruning techniques 

available in WEKA were used, SMO was based on two kernels (e.g., POLYNOMIAL 

and RBF), while for LIBSVM eight different configurations, using C-SVC and V-SVC, 

were used. Thus, in total 16 different ML techniques have been evaluated. Moreover, 

the ML techniques were also combined with the DABOOSTM1 boosting technique, i.e., 

a method that iteratively uses a set of models built in previous iterations to manipulate 

the training set and make it more suitable for the classification problem, leading to 32 

different variants. An important step for an effective construction of machinelearning 

models consists of the identification of the best configuration of parameters: the authors 
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applied to each classifier the Grid-search algorithm, capable of exploring the parameter 

space to find an optimal configuration.  

 

C. Dataset Building  

To establish the dependent variable for code smell prediction models, the authors 

applied for each code smell the set of automatic detectors . However, code smell 

detectors cannot usually achieve 100% recall, meaning that an automatic detection 

process might not identify actual code smell instances (i.e., false negatives) even in the 

case that multiple detectors are combined. To cope with false positives and to increase 

their confidence in validity of the dependent variable, the authors applied a stratified 

random sampling of the classes/methods of the considered systems: this sampling 

produced 1,986 instances (826 smelly elements and 1,160 nonsmelly ones), which 

were manually validated by the authors in order to verify the results of the detectors. As 

a final step, the sampled dataset was normalized for size: the authors randomly 

removed smelly and non-smelly elements building four disjoint datasets, i.e., one for 

each code smell type, composed of 140 smelly instances and 280 non smelly ones (for 

a total of 420 elements). These four datasets represented the training set for the ML 

techniques above.  

D. Validation Methodology  

To test the performance of the different code smell prediction models built, the authors 

applied 10-fold cross validation: each of the four datasets was randomly partitioned in 

ten folds of equal size, such that each fold has the same proportion of smelly elements. 

A single fold was retained as test set, while the remaining ones were used to train the 

ML models. The process was then repeated ten times, using each time a different fold 

as the test set. Finally, the performance of the models was assessed using mean 

accuracy, F-Measure, and AUC-ROC over the ten runs.  

E. Limitations and Replication Problem Statement  

The results achieved in reported that most of the classifiers have accuracy and F-

Measure higher than 95%, with J48 and RANDOM FOREST being the most powerful 

ML techniques. These results seem to suggest that the problem of code smell detection 

can be solved almost perfectly through ML approaches, while other unsupervised 

techniques (e.g., the ones based on detection rules) only provide suboptimal 

recommendations. However, we identified possible reasons for these good results:  
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selection, and (iii) validation methodology on the results of our study. At the same, we 

aim at addressing these issues, thus defining new prediction models for code smell 

detection.  

 

 

 

CHAPTER 3 

METHODOLOGY 
 
3.1 EXISTING SYSTEM 
The goal of the empirical study reported in this paper was to analyze the sensitivity of 

the results achieved by our reference work with respect to the metric distribution of 

smelly and non-smelly instances, with the purpose of understanding the real capabilities 

of existing prediction models in the detection of code smells. 

The perspective is of both researchers and practitioners: the former are interested in 

understanding possible limitations of current approaches in order to devise better ones; 

the latter are interested in evaluating the actual applicability of code smell prediction in 

practice.  

DISADVANTAGE: 

 Subjective of developers which respect to code smell detection by such tools 

 Scarce agreement between different detectors  

Difficulties in finding good thresholds to be used for detection 

3.2 PROPOSED MODEL 

 Stage 1: Code smell classification 

 Stage-2: Evaluation of machine learning model 

 Navie bayes 

 Random forest 

 Decision tree classifier 

 Stage-3: Model variance test 

ADVANTAGE: 

 performance of a set of classifiers over a sample of the total instances contained 

in the dataset, 


