
v

ABSTRACT

Code smells indicate poor implementation choices that may hinder the system

maintenance. Their detection is important for the software quality improvement, but

studies suggest that it should be tailored to the perception of each developer. Therefore,

detection techniques must adapt their strategies to the developer‘s perception. Machine

Learning (ML) algorithms is a promising way to customize the smell detection, but there

is a lack of studies on their accuracy in detecting smells for different developers. This

paper evaluates the use of ML algorithms on detecting code smells for different

developers, considering their individual perception about code smells.The results show

that ML-algorithms achieved low accuracies for the developers that participated of our

study, showing that are very sensitive to the smell type and the developer. These

algorithms are not able to learn with limited training set, an important limitation when

dealing with diverse perceptions about code smells.

vi

 TABLE OF CONTENTS

Chapter
No.

TITLE Page No.

 ABSTRACT v

 LIST OF FIGURES

 LIST OF TABLES

 Vii

Viii

1 INTRODUCTION 1

2 LITERATURE SURVEY 4

 2.1. DETECTING CODE SMELLS USING MACHINE

LEARNING
4

3 METHODOLOGY 8

 3.1. EXISTING SYSTEM 8

 3.2. PROPOSED SYSTEM 8

 3.3. SYSTEM ARCHITECTURE 9

 3.4. WORKING OF RANDOM FOREST 10

4

RESULTS AND DISCUSSION

4.1. MACHINE LEARNING
23

5

CONCLUSION
23

5.1. CONCLUSION
34

REFERENCES
34

APPENDICES
37

 A. SOURCE CODE 37

 B. SCREENSHOTS 41

 C. PLAGIARISM REPORT 43

 D. JOURNAL PAPER

44

vii

 LIST OF FIGURES

Figure No.

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

 Figure Name

SYSTEM ARCHITECTURE

FLOW CHART

BAGGING PARALLEL & BAGGING

SEQUENTIAL

BAGGING

 BAGGING ENSEMBLE METHOD

SUPERVISED LEARNING AND UNSUPERVISED

LEARNING

DECISION BOUNDARY

GRADIENT SEARCH AND POINT AND LINE

ORIGINAL CLUSTERED DATA AND CLUSTERED
DATA

MACHINE LEARNING

TRAINING SET

VALIDATION SET

SAMPLE OUTPUT WINDOW

CODE SMELL GRAPH

Page No.

9

9

10

11

12

27

28

28

29

30

30

31

33

33

viii

LIST OF TABLES

Figure No.

3.1

4.1

Figure Name

DECISION TREES AND RANDOM FORESTS

PREDICTED OUTPUT

Page No.

13

32

1

 CHAPTER 1

 INTRODUCTION

Nowadays, the complexity of software systems is growing fast and software

companies are required to continuously update their source code. Those continuous

changes frequently occur under time pressure and lead developers to set aside good

programming practices and principles in order to deliver the most appropriate but still

immature product in the shortest time possible. This process can often result in the

introduction of so-called technical debt design problems likely to have negative

consequences during the system maintenance and evolution.

To overcome these limitations, machine-learning (ML) techniques are being adopted to

detect code smells. Usually a supervised method is exploited, i.e., a set of independent

variables (a.k.a. predictors) are used to determine the value of a dependent variable

(i.e., presence of a smell or degree of the smelliness of a code element) using a

machine-learning classifier (e.g., Logistic Regression).

In order to empirically assess the actual capabilities of ML techniques for code smell

detection, Arcelli Fontana et al.conducted a large-scale study where 32 different ML

algorithms were applied to detect four code smell types, i.e., Data Class, Large Class,

Feature Envy and Long Method. The authors reported that most of the classifiers

exceeded 95% both in terms of accuracy and of F-Measure, with J48 and RANDOM

FOREST obtaining the best performance. The authors see in these results an indication

that ―using machine learning algorithms for code smell detection is an appropriate

approach‖ and that ―performances are already so good that we think it does not really

matter in practice what machine learning algorithm one chooses for code smell

detection‖.

In our research, we have observed important limitations of the work by Arcelli Fontana

et al. that might affect the generalizability of their findings. Specifically, the high

performance reported might be due to the way the dataset was constructed: for each

type of code smell analyzed, the dataset contains only instances affected by this type of

smell or non-smelly instances, with a non-realistic balance of smelly and non-smelly

instances and a strongly different distribution of the metrics between the two groups of

2

instances, which is far from reality. During software maintenance and evolution,

software systems need to be continuously changed by developers in order to (i)

implement new requirements, (ii) enhance existing features, or (iii) fix important bugs.

Due to time pressure or community-related factors, developers do not always have the

time or the willingness to keep the complexity of the system under control and find good

design solutions before applying their modifications. As a consequence, the

development activities are often performed in an undisciplined manner, and have the

effect to erode the original design of the system by introducing the so-called technical

debt. Code smells, i.e., symptoms of the presence of poor design or implementation

choices in the source code, represent one of the most serious forms of technical debt.

Indeed, previous research found that not only they strongly reduce the ability of

developers to comprehend the source 2code, but also make the affected classes more

change- and fault-prone. Thus, they represent an important threat for maintainability

effort and costs.

In past and recent years, the research community was highly active on the topic. On the

one hand, many empirical studies have been conducted with the aim of understanding

(i) when and why code smells are introduced, (ii) what is their evolution and longevity in

software projects, and (iii) to what extent they are relevant for developers. On the other

hand, several code smell detectors have been proposed as well. Most of them can be

considered as heuristics-based: they apply a two-step process where a set of metrics

are firstly computed, and then some thresholds are applied upon such metrics to

discriminate between smelly and non-smelly classes.

They differ from each other for (i) the specific algorithms used to identify code smells

(e.g., a combination of metrics or through the use of more advanced methodologies like

Relational Topic Modeling) and (ii) the metrics exploited (e.g., based on code metrics or

historical data). Although it has been showed that such detectors have reasonable

performance in terms of accuracy of the recommendations, previous works highlighted

a number of important limitations that might preclude the use of such detectors in

practice.

In particular, code smells identified by existing detectors can be subjectively interpreted

by developers. At the same time, the agreement between them is low. More importantly,

3

most of them require the specification of thresholds to distinguish smelly code

components from non-smelly one: naturally, the selection of thresholds strongly

influence their accuracy. For all these reasons, a recent trend is the adoption of

Machine Learning (ML) techniques for approaching the problem.

In this scenario, a supervised method is exploited: a set of independent variables

(a.k.a., predictors) are used to predict the value of a dependent variable (i.e., the

smelliness of a class) using a machine learning classifier (e.g., Logistic Regression).

The model can be trained using a sufficiently large amount of data available from the

project under analysis, i.e., within-project strategy, or using data coming from other

(similar) software projects, i.e., cross-project strategy. These approaches clearly differ

from the heuristics-based ones, as they rely on classifiers to discriminate the smelliness

of classes rather than on predefined thresholds upon computed metrics.

4

 CHAPTER 2

 LITERATURE SURVEY

2.1. Detecting Code Smells using Machine Learning Techniques

ABSTRACT:

Code smells are symptoms of poor design and implementation choices weighing

heavily on the quality of produced source code. During the last decades several code

smell detection tools have been proposed. However, the literature shows that the

results of these tools can be subjective and are intrinsically tied to the nature and

approach of the detection.

In a recent work the use of Machine-Learning (ML) techniques for code smell detection

has been proposed, possibly solving the issue of tool subjectivity giving to a learner the

ability to discern between smelly and non-smelly source code elements. While this work

opened a new perspective for code smell detection, it only considered the case where

instances affected by a single type smell are contained in each dataset used to train

and test the machine learners. In this work we replicate the study with a different

dataset configuration containing instances of more than one type of smell. The results

reveal that with this configuration the machine learning techniques reveal critical

limitations in the state of the art which deserve further research. Index Terms—Code

Smells; Machine Learning; Empirical Studies; Replication Study .

THE REFERENCE WORK

In the authors analyze three main aspects related to the use of machine-learning

algorithms for code smell detection: (i) performance of a set of classifiers over a sample

of the total instances contained in the dataset, (ii) analysis of the minimum training set

size needed to accurately detect code smells, and (iii) analysis of the number of code

smells detected by different classifiers over the entire dataset.

In this paper, we focus on the first research question of the reference work. In the

following subsections we detail the methodological process adopted in

A. Context Selection

5

The context of the study was composed of software systems and code smells. The

authors have analyzed systems from the Qualitas Corpus, release 20120401r, one of

the largest curated benchmark datasets to date, specially designed for empirical

software engineering research. Among 111 Java systems of the corpus, 37 were

discarded because they could not be compiled and therefore code smell detection could

not be applied. Hence, the authors focused on the remaining 74 systems. For each

system 61 source code metrics were computed at class level and 82—at method level.

The former were used as independent variables for predicting class-level smells Data

Class and God Class, the latter for predicting method-level smells Feature Envy and

Long Method:

God Class.

It arises when a source code class implements more than one responsibility; it is usually

characterized by a large number of attributes and methods, and has several

dependencies with other classes of the system.

Data Class.

This smell refers to classes that store data without providing complex functionality.

Feature Envy.

This is a method-level code smell that appears when a method uses much more data

than another class with respect to the one it is actually inLong Method. It represents a

large method that implements more than one function. The choice of these smells is

due to the fact that they capture different design issues, e.g., large classes or misplaced

methods.

B. Machine Learning Techniques Experimented

In six basic ML techniques have been evaluated: J48, JRIP, RANDOM FOREST,

NAIVE BAYES, SMO, and LIBSVM. As for J48, the three types of pruning techniques

available in WEKA were used, SMO was based on two kernels (e.g., POLYNOMIAL

and RBF), while for LIBSVM eight different configurations, using C-SVC and V-SVC,

were used. Thus, in total 16 different ML techniques have been evaluated. Moreover,

the ML techniques were also combined with the DABOOSTM1 boosting technique, i.e.,

a method that iteratively uses a set of models built in previous iterations to manipulate

the training set and make it more suitable for the classification problem, leading to 32

different variants. An important step for an effective construction of machinelearning

models consists of the identification of the best configuration of parameters: the authors

6

applied to each classifier the Grid-search algorithm, capable of exploring the parameter

space to find an optimal configuration.

C. Dataset Building

To establish the dependent variable for code smell prediction models, the authors

applied for each code smell the set of automatic detectors . However, code smell

detectors cannot usually achieve 100% recall, meaning that an automatic detection

process might not identify actual code smell instances (i.e., false negatives) even in the

case that multiple detectors are combined. To cope with false positives and to increase

their confidence in validity of the dependent variable, the authors applied a stratified

random sampling of the classes/methods of the considered systems: this sampling

produced 1,986 instances (826 smelly elements and 1,160 nonsmelly ones), which

were manually validated by the authors in order to verify the results of the detectors. As

a final step, the sampled dataset was normalized for size: the authors randomly

removed smelly and non-smelly elements building four disjoint datasets, i.e., one for

each code smell type, composed of 140 smelly instances and 280 non smelly ones (for

a total of 420 elements). These four datasets represented the training set for the ML

techniques above.

D. Validation Methodology

To test the performance of the different code smell prediction models built, the authors

applied 10-fold cross validation: each of the four datasets was randomly partitioned in

ten folds of equal size, such that each fold has the same proportion of smelly elements.

A single fold was retained as test set, while the remaining ones were used to train the

ML models. The process was then repeated ten times, using each time a different fold

as the test set. Finally, the performance of the models was assessed using mean

accuracy, F-Measure, and AUC-ROC over the ten runs.

E. Limitations and Replication Problem Statement

The results achieved in reported that most of the classifiers have accuracy and F-

Measure higher than 95%, with J48 and RANDOM FOREST being the most powerful

ML techniques. These results seem to suggest that the problem of code smell detection

can be solved almost perfectly through ML approaches, while other unsupervised

techniques (e.g., the ones based on detection rules) only provide suboptimal

recommendations. However, we identified possible reasons for these good results:

8

selection, and (iii) validation methodology on the results of our study. At the same, we

aim at addressing these issues, thus defining new prediction models for code smell

detection.

CHAPTER 3

METHODOLOGY

3.1 EXISTING SYSTEM
The goal of the empirical study reported in this paper was to analyze the sensitivity of

the results achieved by our reference work with respect to the metric distribution of

smelly and non-smelly instances, with the purpose of understanding the real capabilities

of existing prediction models in the detection of code smells.

The perspective is of both researchers and practitioners: the former are interested in

understanding possible limitations of current approaches in order to devise better ones;

the latter are interested in evaluating the actual applicability of code smell prediction in

practice.

DISADVANTAGE:

 Subjective of developers which respect to code smell detection by such tools

 Scarce agreement between different detectors

Difficulties in finding good thresholds to be used for detection

3.2 PROPOSED MODEL

 Stage 1: Code smell classification

 Stage-2: Evaluation of machine learning model

 Navie bayes

 Random forest

 Decision tree classifier

 Stage-3: Model variance test

ADVANTAGE:

 performance of a set of classifiers over a sample of the total instances contained

in the dataset,

