

ABSTRACT

Global pandemic COVID-19 circumstances emerged in an epidemic of dangerous

disease in all over the world. Wearing a face mask will help prevent the spread of

infection and prevent the individual from contracting any airborne infectious germs.

Using Face Mask Detection System, one can monitor if the people are wearing masks

or not.

 Here HAAR-CASACADE algorithm is used for image detection. Collating with other

existing algorithms, this classifier produces a high recognition rate even with varying

expressions, efficient feature selection and low assortment of false positive features.

HAAR feature-based cascade classifier system utilizes only 200 features out of 6000

features to yield a recognition rate of 85-95%.

According to this motivation we demand mask detection as a unique and public health

service system during the global pandemic COVID-19 epidemic. The model is trained

by face mask image and non-face mask image.

Keywords: COVID-19 epidemic, HAAR-CASACADE algorithm, mask detection,

face mask image, non-face mask image

TABLE OF CONTENTS

LIST OF SYMBOLS IX

LIST OF FIGURES X

LIST OF ABBREVATIONS XI

CHAPTER 1 INTRODUCTION 1

1.2. Motivation of the work 1

1.3 Problem Statement 1

CHAPTER 2 LITERATURE SURVEY 2

2.1 An Automated System to limit COVID-19 Using Facial Mask Detection 2

2.2 Masked Face Recognition Using Convolutional Neural Network 2

2.3 Existing System 3

CHAPTER 3 METHODOLOGY 4

3.1 Proposed system 4

3.2 Tensor flow frame work 4

3.3 Open CV 5

3.4 Numpy 6

3.5 Mat plot 6

3.6 Ipython 7

3.7 Python Concepts 7

3.7.1 Python Features 7

3.7.2 Python Numbers 10

3.7.3 Python Strings 10

3.7.4 Python Lists 10

3.7.5 Python Tuples 10

3.7.6 Python Dictonary 11

3.8 Pandas 11

 3.9 Keras 12

3.10 Machine Learning Approaches 13

 3.10.1 Viola-jones Object Framework 13

 3.10.2 Scale-Invariant Feature Transform 13

 3.10.3 Histogram of Oriented Gradients 14

 3.11 Haar Feature-Based Cascade Classifiers 14

 3.12 Deep Learning 15

 3.13 Neutral Network Versus Conventional computers 16

 3.14 Architecture of Neutral Network 17

 3.14.1 Feed-Forward Networks 17

 3.14.2 Feedback Networks 17

 3.14.3 Network Layers 18

 3.15 Convolutional Network 18

 3.16 Convolutional Layer 20

 3.17 The Non-Linear Layer 21

 3.18 The Pooling Layer 21

 3.19 Fully Connected Layer 22

 3.20 CNN Model 23

 3.20.1 Layers in CNN Model 23

 3.21 System Architecture 24

CHAPTER 4 DESIGN

 4.1 UML Diagrams 28

 4.1.1 Use Case Diagram 29

 4.1.2 Sequence Diagram 30

 4.1.3 Activity Diagram 31

 4.1.4 Block Diagram 32

 4.1.5 Class Diagram 33

 4.1.6 Data Flow Diagram 35

 4.1.7 Flow Chart 36

CHAPTER 5 EXPERIMENT ANALYSIS

 5.1 Modules 37

 5.2 Data Set link 37

 5.3 Code Implementation 38

 5.3.1 Creating image datasets an data loaders for train and test using the

experiments folder split 38

5.3.2 Training the model 40

5.3.3 Web Cam 45

 5.3.4 Functional Requirements 51

 5.3.5 Non-Functional Requirements 51

 5.3.6 System Configuration 51

 5.3.7 Hardware Requirements 51

 5.3.8 Software Requirements 52

 5.4 Input and Output 53

CHAPTER 6 CONCLUSION AND FUTURE ENHANCEMENT 56

REFERENCES 58

APPENDICES 73

PUBLICATION DOCUMENTATION 80

LIST OF FIGURES

Fig.no. Description Page.no.

1. Layer in NN 17

2. Basic structure of CNN 19

3. Hierarchy of local filter 20

4. Convolution with a filter 21

5. Output of Convolution Layer 21

6. Max Pooling Layer 22

7. Overall structure of CNN 22

8. System Architecture 24

9. Building the Model 26

10. Use Case Diagram 29

11. Sequence Diagram 30

12. Activity Diagram 31

13. Block Diagram 32

14. Class Diagram 33

15. Data Flow Diagram 35

16. Flowchart Diagram 36

17. Sample Output 53

18. Real time input 54

19. Real time output 55

LIST OF ABBREVATIONS

MTCNN - Multi-Task Cascaded Convolutions Neural

 Networks

CNN - Convolutional Neural Network

CCTV - Closed-Circuit Television

MIT - Massachusetts Institute Technology

CNRI - Corporation for National Research Initiatives

LLNL - Lawrence Livermore National Laboratory

PyPI - Python Package Index

SIFT - Scale-Invariant Feature Transform

HOG - Histogram of Oriented Gradients

UML - Unified Modelling Language

 1

CHAPTER 1

INTRODUCTION

1.2 Motivation of Work:

The world has not yet fully Recover from this pandemic and the vaccine that can

effectively treat Covid-19 is yet to be discovered. However, to reduce the impact of

the pandemic on the country's economy, several governments have allowed a limited

number of economic activities to be resumed once the number of new cases of Covid-

19 has dropped below a certain level. As these countries cautiously restarting their

economic activities, concerns have emerged regarding workplace safety in the new

post-Covid-19 environment.

To reduce the possibility of infection, it is advised that people should wear masks

and maintain a distance of at least 1 meter from each other. Deep learning has gained

more attention in object detection and was used for human detection purposes and

develop a face mask detection tool that can detect whether the individual is wearing

mask or not. This can be done by evaluation of the classification results by analyzing

real-time streaming from the Camera. In deep learning projects, we need a training

data set. It is the actual dataset used to train the model for performing various actions.

1.3 PROBLEM STATEMENT

The main objective of the face detection model is to detect the face of individuals and

conclude whether they are wearing masks or not at that particular moment when they

are captured in the image.

 2

CHAPTER 2

LITERATURE SURVEY

2.1 An Automated System to Limit COVID-19 Using Facial Mask

Detection in Smart City Network [1]: COVID-19 pandemic caused by novel

coronavirus is continuously spreading until now all over the world. The impact of

COVID-19 has been fallen on almost all sectors of development. The healthcare

system is going through a crisis. Many precautionary measures have been taken to

reduce the spread of this disease where wearing a mask is one of them. In this paper,

we propose a system that restrict the growth of COVID-19 by finding out people who

are not wearing any facial mask in a smart city network where all the public places are

monitored with Closed-Circuit Television (CCTV) cameras. While a person without a

mask is detected, the corresponding authority is informed through the city network. A

deep learning architecture is trained on a dataset that consists of images of people with

and without masks collected from various sources. The trained architecture achieved

98.7% accuracy on distinguishing people with and without a facial mask for

previously unseen test data. It is hoped that our study would be a useful tool to reduce

the spread of this communicable disease for many countries in the world.

 2.2 Masked Face Recognition Using Convolutional Neural

Network [2]: Recognition from faces is a popular and significant technology in

recent years. Face alterations and the presence of different masks make it too much

challenging. In the real-world, when a person is uncooperative with the systems such

as in video surveillance then masking is further common scenarios. For these masks,

current face recognition performance degrades. An abundant number of researches

work has been performed for recognizing faces under different conditions like

changing pose or illumination, degraded images, etc. Still, difficulties created by

masks are usually disregarded. The primary concern to this work is about facial masks,

and especially to enhance the recognition accuracy of different masked faces. A

feasible approach has been proposed that consists of first detecting the facial regions.

The occluded face detection problem has been approached using Multi-Task Cascaded

Convolutional Neural Network (MTCNN). Then facial features extraction is

performed using the Google Face Net embedding model.

 3

2.3 EXISTING SYSTEM

face detection problem has been approached using Multi-Task Cascaded

Convolutional Neural Network (MTCNN). Then facial features extraction is

performed using the Google Face Net embedding model.

1.This system is capable to train the dataset of both persons wearing masks andwithout

wearing masks.

After training the model the system can predicting whether the person is wearing the

mask or not wearing mask.

 4

CHAPTER 3

METHODOLOGY

3.1 PROPOSED SYSTEM

1.This system is capable to train the dataset of both persons wearing masks and

without wearing masks.

2.After training the model the system can predicting whether the person is wearing the

mask or not .

3.It also can access the webcam and predict the result.

3.2 TENSORFLOW FRAMEWORK:

Tensor flow is an open-source software library.

Tensor flow was originally developed by researchers and engineers.

It is working on the Google Brain Team within Google’s Machine Intelligence

research organization the purposes of conducting machine learning and deep neural

networks research.

It is an opensource framework to run deep learning and other statistical and predictive

analytics workloads.

It is a python library that supports many classification and regression algorithms and

more generally deep learning.

TensorFlow is a free and open-source software library for dataflow and differentiable

programming across a range of tasks.

It is a symbolic math library, and is also used for machine learning applications such

as neural networks.

It is used for both research and production at Google, TensorFlow is Google Brain's

second-generation system.

Version 1.0.0 was released on February 11, While the reference implementation runs

on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional

CUDA and SYCL extensions for general-purpose computing on graphics processing

units).

Tensor Flow is available on 64-bit Linux, macOS, Windows, and mobile computing

platforms including Android and iOS.

