ABSTRACT

The nearly limitless quantity of available data, affordable data storage, and the growth of less expensive and more powerful processing has propelled the growth of Machine Learning . Now many industries are developing more robust models capable of analyzing bigger and more complex data while delivering faster, more accurate results on vast scales. The gender classification is an essential and critical for many applications in the commercial domains such as applications of human-computer interaction and computer-aided physiological or psychological analysis, since it contains a widerange of information regarding the characteristics difference between male and female.

Automatic age and gender classification has become relevant to an increasing amount of applications, particularly since the rise of social platforms and social media. Nevertheless, performance of existing methods on real-world images is still significantly lacking, especially when compared to the tremendous leaps in performance recently reported for the related task of face recognition. In this paper we show that by learning representations through the use of deep-convolutional neural networks (CNN), a significant increase in performance can be obtained on these tasks. To this end, we propose a simple convolutional net architecture that can be used even when the amount of learning data is limited. We evaluate our method on the recent Adience benchmark for age and gender estimation and show it to dramatically outperform current state-of-the-art methods.

This paper addresses the issue of gender classification using the method of Principal Component Analysis (PCA) for face recognition and classification of human faces. The use of the PCA algorithm has a maximum success rate of 82%. The gender classification system is then improved by using the Support Vector Machines (SVM. This algorithm has a machine-learning framework by which it trains on a database and using this trained environment to predict the outcome of other images. The classification is restricted to two classes - male and female.

KEYWORDS : PRINCIPAL COMPONENT ANALYSIS, SUPPORT VECTOR MACHINES

CONTENTS

ABSTRACT	5
LIST OF SYMBOLS	8
LIST OF FIGURES	9
LIST OF TABLES	10
LIST OF ABBREVATIONS	11
CHAPTER 1 INTRODUCTION	12 - 31
1.1.1 Artificial Intelligence	12
1.1.2 Machine Learning	12 -13
1.1.3 Image Processing	13 -14
1.1.4 Gray Scale Images	14 - 15
1.1.5 Haar Cascade Classifier	15 - 18
1.1.6 Support Vector Machines	19 - 26
1.1.7 Python	26 - 28
1.1.8 Numpy	28
1.1.9 Computer Vision	29 - 31
CHAPTER 2 LITERATURE SURVEY	32
CHAPTER 3 PROPOSED METHODOLOGY	33 - 44
3.1 Introduction	33
3.1.1 Image Acquisition	33 - 34
3.1.2 Converting image into gray scale image	34 - 35
3.1.3 Detecting Faces	35 - 36
3.1.4 Cropping Faces	35 - 36
3.1.5 Normalizing the Image	36 - 37
3.1.6 Eigen Image with PCA	37 - 39
3.17 Machine Learning Model	40
3.1.8 Model Tuning	40 - 43
3.1.9 Hardware Requirements	43 - 44

•

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.1.1 Artificial Intelligence :

Artificial intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term may also be applied to any machine that exhibits traits associated with a human mind such as learning and problem-solving.

The ideal characteristic of artificial intelligence is its ability to rationalize and take actions that have the best chance of achieving a specific goal. A subset of artificial intelligence is machine learning which refers to the concept that computer programs can automatically learn from and adapt to new data without being assisted by humans. Deep learning techniques enable this automatic learning through the absorption of huge amounts of unstructured data such as text, images, or video.

When most people hear the term artificial intelligence, the first thing they usually think of is robots. That's because big-budget films and novels weave stories about human-like machines that wreak havoc on Earth. But nothing could be further from the truth.

Artificial intelligence is based on the principle that human intelligence can be defined in a way that a machine can easily mimic and execute tasks, from the most simple to those that are even more complex. The goals of artificial intelligence include mimicking human cognitive activity. Researchers and developers in the field are making surprisingly rapid strides in mimicking activities such as learning, reasoning, and perception, to the extent that these can be concretely defined. Some believe that innovators may soon be able to develop systems that exceed the capacity of humans to learn or reason out any subject. But others remain skeptical because all cognitive activity is laced with value judgments that are subject to human experience.

As technology advances, previous benchmarks that defined artificial intelligence become outdated. For example, machines that calculate basic functions or recognize text through optical character recognition are no longer considered to embody artificial intelligence, since this function is now taken for granted as an inherent computer function.

AI is continuously evolving to benefit many different industries. Machines are wired using a cross-disciplinary approach based on mathematics, computer science, linguistics, psychology, and more.

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. **Machine learning focuses on the development of computer programs** that can access data and use it to learn for themselves.

The process of learning begins with observations or data, such as examples, direct experience, or instruction, in order to look for patterns in data and make better decisions in the future based on the examples that we provide. **The primary aim is to allow the computers learn automatically** without human intervention or assistance and adjust actions accordingly.

But, using the classic algorithms of machine learning, text is considered as a sequence of keywords; instead, an approach based on semantic analysis mimics the human ability to understand the meaning of a text.

Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. Starting from the analysis of a known training dataset, the learning algorithm produces an inferred function to make predictions about the output values. The system is able to provide targets for any new input after sufficient training. The learning algorithm can also compare its output with the correct, intended output and find errors in order to modify the model accordingly.

In contrast, **unsupervised machine learning algorithms** are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesn't figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data.

Semi-supervised machine learning algorithms fall somewhere in between supervised and unsupervised learning, since they use both labeled and unlabeled data for training – typically a small amount of labeled data and a large amount of unlabeled data. The systems that use this method are able to considerably improve learning accuracy. Usually, semi-supervised learning is chosen when the acquired labeled data requires skilled and relevant resources in order to train it / learn from it. Otherwise, acquiring unlabeled data generally doesn't require additional resources.

Reinforcement machine learning algorithms is a learning method that interacts with its environment by producing actions and discovers errors or rewards. Trial and error search and delayed reward are the most relevant characteristics of reinforcement learning. This method allows machines and software agents to automatically determine the ideal behavior within a specific context in order to maximize its performance. Simple reward feedback is required for the agent to learn which action is best; this is known as the reinforcement signal.Machine learning enables analysis of massive quantities of data. While it generally delivers faster, more accurate results in order to identify profitable opportunities or dangerous risks, it may also require additional time and resources to train it properly. Combining machine learning with AI and cognitive technologies can make it even more effective in processing large volumes of information.

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. It is a type of signal processing in which input is an image and output may be image or characteristics/features associated with that image. Nowadays, image processing is among rapidly growing technologies. It forms core research area within engineering and computer science disciplines too.

Image processing basically includes the following three steps:

Importing the image via image acquisition tools;

Analysing and manipulating the image;

Output in which result can be altered image or report that is based on image analysis.

There are two types of methods used for image processing namely, analogue and digital image processing. Analogue image processing can be used for the hard copies like printouts and photographs. Image analysts use various fundamentals of interpretation while using these visual techniques. Digital image processing techniques help in manipulation of the digital images by using computers. The three general phases that all types of data have to undergo while using digital technique are pre-processing, enhancement, and display, information extraction.

Digital image processing consists of the manipulation of images using digital computers. Its use has been increasing exponentially in the last decades. Its applications range from medicine to entertainment, passing by geological processing and remote sensing. <u>Multimedia systems</u>, one of the pillars of the modern information society, rely heavily on digital image processing.

The discipline of digital image processing is a vast one, encompassing digital signal processing techniques as well as techniques that are specific to images. An image can be regarded as a function f (x, y) of two continuous variables x and y. To be processed digitally, it has to be **sampled** and transformed into a matrix of numbers. Since a computer represents the numbers using finite precision, these numbers have to be quantized to be represented digitally. Digital image processing consists of the manipulation of those finite precision numbers. The processing of digital images can be divided into several classes: image enhancement, image restoration, image analysis, and image compression. In image enhancement, an image is manipulated, mostly by heuristic techniques, so that a human viewer can extract useful information from it. Image restoration techniques aim at processing corrupted images from which there is a statistical or mathematical description of the degradation so that it can be reverted. Image analysis techniques permit that an image be processed so that information can be automatically extracted from it. Examples of image analysis are image segmentation, edge extraction, and texture and motion analysis. An important characteristic of images is the huge amount of information required to represent them. Even a gray-scale image of moderate resolution, say 512 \times 512, needs 512 \times 512 \times 8 \approx 2 \times 106 bits for its representation. Therefore, to be practical to store and transmit digital images, one needs to perform some sort of image compression, whereby the redundancy of the images is exploited for reducing the number of bits needed in their representation.

1.1.4 GRAY SCALE IMAGES :

A grayscale (or gray level) image is simply one in which the only colors are shades of gray. The reason for differentiating such images from any other sort of color image is that less information needs to be provided for each pixel. In fact a `gray' color is one in which the red, green and blue components all have equal intensity in RGB space, and so it is only necessary to specify a single intensity value for each pixel, as opposed to the three intensities needed to specify each pixel in a full color image.

Often, the grayscale intensity is stored as an 8-bit integer giving 256 possible different shades of gray from black to white. If the levels are evenly spaced then the difference between successive graylevels is significantly better than the gray level resolving power of the human eye.

Grayscale images are very common, in part because much of today's display and image capture hardware can only support 8-bit images. In addition, grayscale images are entirely sufficient for many tasks and so there is no need to use more complicated and harder-to-process color images.

1.1.5 Haar Cascade Classifier :

Object Detection using Haar feature-based cascade classifiers is an effective object detection method proposed by Paul Viola and Michael Jones in their paper, "Rapid Object Detection using a Boosted Cascade of Simple Features" in 2001. It is a machine learning based approach where a cascade function is trained from a lot of positive and negative images. It is then used to detect objects in other images.

Here we will work with face detection. Initially, the algorithm needs a lot of positive images (images of faces) and negative images (images without faces) to train the classifier. Then we need to extract features from it. For this, Haar features shown in the below image are used. They are just like our convolutional kernel. Each feature is a single value obtained by subtracting sum of pixels under the white rectangle from sum of pixels under the black rectangle.

1.1.6 Support Vector Machines :

Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms, which is used for Classification as well as Regression problems. However, primarily, it is used for Classification problems in Machine Learning.

The goal of the SVM algorithm is to create the best line or decision boundary that can segregate n-dimensional space into classes so that we can easily put the new data point in the correct category in the future. This best decision boundary is called a hyperplane.

SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme cases are called as support vectors, and hence algorithm is termed as Support Vector Machine. Consider the below diagram in which there are two different categories that are classified using a decision boundary or hyperplane:

Example: SVM can be understood with the example that we have used in the KNN classifier. Suppose we see a strange cat that also has some features of dogs, so if we want a model that can accurately identify whether it is a cat or dog, so such a model can be created by using the SVM algorithm. We will first train

our model with lots of images of cats and dogs so that it can learn about different features of cats and dogs, and then we test it with this strange creature. So as support vector creates a decision boundary between these two data (cat and dog) and choose extreme cases (support vectors), it will see the extreme case of cat and dog. On the basis of the support vectors, it will classify it as a cat. Consider the below diagram:

SVM algorithm can be used for **Face detection**, image classification, text categorization, etc.

Types of SVM

SVM can be of two types:

- **Linear SVM:** Linear SVM is used for linearly separable data, which means if a dataset can be classified into two classes by using a single straight line, then such data is termed as linearly separable data, and classifier is used called as Linear SVM classifier.
- Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if a dataset cannot be classified by using a straight line, then such data is termed as non-linear data and classifier used is called as Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:

Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in n-dimensional space, but we need to find out the best decision boundary that helps to classify the data points. This best boundary is known as the hyperplane of SVM.

The dimensions of the hyperplane depend on the features present in the dataset, which means if there are 2 features (as shown in image), then hyperplane will be a straight line. And if there are 3 features, then hyperplane will be a 2-dimension plane.

We always create a hyperplane that has a maximum margin, which means the maximum distance between the data points.

Support Vectors:

The data points or vectors that are the closest to the hyperplane and which affect the position of the hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence called a Support vector.

How does SVM works?

Linear SVM:

The working of the SVM algorithm can be understood by using an example. Suppose we have a dataset that has two tags (green and blue), and the dataset has two features x1 and x2. We want a classifier that can classify the pair(x1, x2) of coordinates in either green or blue. Consider the below image:

So as it is 2-d space so by just using a straight line, we can easily separate these two classes. But there can be multiple lines that can separate these classes. Consider the below image:

Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary or region is called as a **hyperplane**. SVM algorithm finds the closest point of the lines from both the classes. These points are called support vectors. The distance between the vectors and the hyperplane is called as **margin**. And the goal of SVM is to maximize this margin. The **hyperplane** with maximum margin is called the **optimal hyperplane**.

Audience

This **Python tutorial** is designed for software programmers who need to learn Python programming language from scratch.

Prerequisites

You should have a basic understanding of Computer Programming terminologies. A basic understanding of any of the programming languages is a plus.

1.1.8 Numpy :

NumPy is a Python library used for working with arrays.

It also has functions for working in domain of linear algebra, fourier transform, and matrices.

NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can use it freely.

NumPy stands for Numerical Python.

Why Use NumPy?

In Python we have lists that serve the purpose of arrays, but they are slow to process.

NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.

The array object in NumPy is called ndarray, it provides a lot of supporting functions that make working with ndarray very easy.

Arrays are very frequently used in data science, where speed and resources are very important.

Why is NumPy Faster Than Lists?

NumPy arrays are stored at one continuous place in memory unlike lists, so processes can access and manipulate them very efficiently.

This behavior is called locality of reference in computer science.

This is the main reason why NumPy is faster than lists. Also it is optimized to work with latest CPU architectures.

Which Language is NumPy written in?

NumPy is a Python library and is written partially in Python, but most of the parts that require fast computation are written in C or C++.