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Abstract—Verifiable Searchable Symmetric Encryption, as an
important cloud security technique, allows users to retrieve the
encrypted data from the cloud through keywords and verify the
validity of the returned results. Dynamic update for cloud data
is one of the most common and fundamental requirements for
data owners in such schemes. To the best of our knowledge, the
existing verifiable SSE schemes supporting data dynamic update
are all based on asymmetric-key cryptography verification, which
involves time-consuming operations. The overhead of verification
may become a significant burden due to the sheer amount of
cloud data. Therefore, how to achieve keyword search over
dynamic encrypted cloud data with efficient verification is a
critical unsolved problem. To address this problem, we explore
achieving keyword search over dynamic encrypted cloud data
with symmetric-key based verification and propose a practical
scheme in this paper. In order to support the efficient verification
of dynamic data, we design a novel Accumulative Authentication
Tag (AAT) based on the symmetric-key cryptography to generate
an authentication tag for each keyword. Benefiting from the
accumulation property of our designed AAT, the authentication
tag can be conveniently updated when dynamic operations on
cloud data occur. In order to achieve efficient data update, we
design a new secure index composed by a search table ST based
on the orthogonal list and a verification list VL containing AATs.
Owing to the connectivity and the flexibility of ST, the update
efficiency can be significantly improved. The security analysis
and the performance evaluation results show that the proposed
scheme is secure and efficient.

Index Terms—searchable symmetric encryption, encrypted
cloud data, verification, data dynamic, symmetric-key cryptog-
raphy
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SEARCHABLE Symmetric Encryption(SSE) is a practical
way for users to securely retrieve the interested ciphertexts

from the encrypted cloud data through keywords. It has
become a hot research topic in cloud computing security and
numerous SSE schemes have been proposed. Nonetheless,
most of them only consider realizing keyword search over
static encrypted cloud data. In practice, the data stored on the
cloud server might often need to be updated(added, deleted
or modified) by data owners. Therefore, it is necessary to
design SSE schemes supporting dynamic update for cloud
data. Kamara et al. [1] proposed a SSE scheme supporting
data dynamic update. This scheme designs a search table by
extending the inverted index to realize the sublinear search,
and adopts a search array and a deletion array with other
free storage spaces to achieve data dynamics. Guo et al. [2]
proposed a dynamic SSE scheme, in which an inverted index
is used to record the locations of keywords. The update table
and the update list make the scheme support data dynamics. In
addition, some other dynamic keyword search schemes [3–5],
which adopt tree-based (i.e. KBB tree, KRB tree and B+ tree)
index structure, have also been proposed.

All of the above schemes do not consider the verification of
the returned search results from the cloud server. In practice,
the cloud server may return invalid results to the data user
for saving computational resources or the software/hardware
malfunctions. Therefore, the data user should be able to
check the authenticity of the returned search results. Kurosawa
et al. [6] introduced two verifiable dynamic SSE schemes.
The first scheme, which adopts the Message Authentication
Code(MAC) to verify the search results, works fine with static
cloud data. However, when the data is updated, the data user
cannot verify whether the returned results are newly updated
or not. If the cloud server returns a result including a pair
of non-updated file and MAC, it can pass the verification. So
it is unable to defend against the replay attack [6]. In order
to solve this problem, the second scheme uses the timestamp
functionality of the RSA accumulator to obtain the verifiability
of search results. It generates accumulators for all files and for
all index vector bits, which are kept by the data owner. If the
cloud server returns the non-updated results, the data owner
can detect them with the newest accumulators. The follow-up
schemes [7–9] utilize RSA accumulator to achieve the verifica-
tion for search results and the dynamic update for cloud data.
Scheme [10] leverages bilinear-map accumulator to achieve
the result verification and the data dynamics. However, RSA
accumulator and bilinear-map accumulator are both based on
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asymmetric-key cryptography involving time-consuming oper-
ations. The overhead of verification will become a significant
computation burden for resource-constrained devices in these
schemes. Therefore, it is a critical unsolved problem to realize
efficient verification for dynamic SSE schemes.

In this paper, we explore how to achieve keyword search
over dynamic encrypted cloud data with symmetric-key based
verification. The contributions of this paper can be summarized
as follows:
• In order to support the efficient verification of dynamic

data, we design a novel symmetric-key based Accumula-
tive Authentication Tag (AAT) to generate an authentica-
tion tag for each keyword. Benefiting from the accumula-
tion property of our designed AAT, the authentication tag
can be conveniently updated when dynamic operations on
cloud data occur. The proposed AAT is collision resistant,
that is, it is computational-difficult for any adversary to
find different messages with the same tag. It also can
resist the replay attack to prevent the cloud server from
returning the old data that actually has been updated.

• In order to realize efficient data update, we design a
new secure index composed by a search table ST and
a verification list VL. ST is based on the orthogonal list
and VL is a singly linked list. For each keyword, we
construct a linked list with the same length aiming at
hiding the frequency of each keyword. When performing
modification operations, the cloud server can fleetly find
the index nodes related to the modified files. When
some files need to be added or deleted, the secure index
can be conveniently enlarged or reduced. Owing to the
connectivity and flexibility of ST, the update efficiency
can be significantly improved.

• Based on the above technique and structure, we design
the first keyword search scheme over dynamic encrypted
cloud data with symmetric-key based verification. We
give the security analysis of the proposed scheme and
conduct the performance comparison with other work in
terms of the search token generation efficiency, verifica-
tion efficiency and update efficiency. The results shows
that the proposed scheme is secure and efficient.

Organization. The rest of this paper is organized as follows.
We summarize the related work in Section 2. We formally de-
fine the problem formulation including system model, design
goals, and definitions in Section 3. The construction of our
scheme is presented in Section 4. We give the security analysis
in Section 5. In Section 6, we evaluate the proposed scheme
through extensive experiments and give the performance com-
parison with other work. After that, we conclude this paper in
Section 7.

II. RELATED WORK

In recent years, cloud computing has been applied to
securely perform various tasks, such as healthcare monitoring
[11], deep packet inspection [12] and key updates [13]. Cloud
storage is universally viewed as one of the most important
services of cloud computing. Although cloud storage provides
great benefit to users, it brings some new security challenges.

Firstly, users may worry about whether their data is intactly
stored in the cloud because the cloud data is out of their physi-
cal control. In order to solve this problem, some cloud storage
auditing schemes [14–16] are proposed to check the integrity
of cloud data. In addition, users usually need to encrypt the
data for keeping the privacy before outsource them to the
cloud. It makes performing keyword search over encrypted
cloud data become a new challenge. In order to address this
issue, searchable encryption is proposed, which allows users
to selectively retrieve cipher documents stored in the cloud by
keyword-based search. Compared with searchable public key
encryption [17, 18], searchable symmetric encryption draws
more attention owing to its high efficiency.

Static SSE. Song et al. [19] firstly proposed the searchable
symmetric encryption scheme, in which a special two-layered
encryption structure is constructed to encrypt each keyword.
Goh et al. [20] proposed a keyword search scheme over
encrypted cloud data based on the Bloom filter. Curtmola et
al. [21] proposed two efficient keyword search schemes(SSE-
1 and SSE-2) over encrypted cloud data. These schemes can
realize sublinear search, that is, the search cost is proportional
to the number of the files matching the queried keyword. Cao
et al. [22] proposed a privacy-preserving multi-keyword ranked
search scheme over encrypted cloud data by utilizing the sim-
ilarity measure of “Coordinate matching” and “inner product
similarity”. In addition, some other static SSE schemes, such
as semantic search scheme [23, 24], similarity search scheme
[25–28], ranked keyword search schemes [29–32], central
keyword-based semantic extension search scheme [33], and
keyword search scheme supporting deduplication [34], have
also been proposed.

Dynamic SSE. In order to support data dynamic update,
some dynamic SSE schemes [1–4, 35–38] have been pro-
posed. Kamara et al. [1] proposed a dynamic SSE scheme
by extending the inverted index approach. This scheme can
achieve sublinear search and CKA2-security. Subsequently,
they proposed another dynamic SSE scheme [4] based on
keyword red-black tree index structure. This scheme supports
parallel keyword search as well as parallel addition and
deletion of files. Naveed et al. [38] presented a dynamic SSE
scheme via blind storage. Blind storage allows a data owner to
store files on a cloud server in such a way that the cloud server
does not learn the number of files. Xia et al. [3] proposed a
dynamic keyword search scheme over encrypted cloud data
based on the tree-based index structure, which can support
multi-keyword rank. Guo et al. [2] proposed a dynamic SSE
scheme based on the inverted index. It enables the data user to
search several phrases in a query request. Also, their proposed
scheme supports the sorting of the search results.

Verifiable SSE. In order to prevent the cloud server from
returning the invalid search results, Chai et al. [39] firstly
proposed the verifiable keyword search scheme over encrypted
cloud data. In order to make the scheme with the “verifiable
searchability”, the cloud server is required to provide a proof
along with the returned results. Kurosawa et al. [40] have
shown how to construct a universally composable (UC)-secure
verifiable SSE scheme. Jiang et al. [41] proposed a verifiable
multi-keyword ranked search scheme over encrypted cloud
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data. A special data structure named QSet is constructed to
achieve efficient keyword search in this scheme. In order to
support dynamic data update for verifiable SSE schemes, Sun
et al. [10] proposed a verifiable dynamic conjunctive keywords
search scheme based on the bilinear-map accumulator and the
accumulation tree. Zhu et al. [9] introduced a verifiable and
dynamic fuzzy keyword search scheme based on the inverted
index. Liu et al. [7] presented a verifiable dynamic keyword
search scheme supporting the search results rank. This scheme
and scheme [9] both leverage RSA accumulator to realize the
results verification and the data dynamics. The verification
techniques used in above verifiable and dynamic schemes are
all based on asymmetric-key cryptography, which involves
time-consuming operations. As a result, the verification ef-
ficiency is very low in these schemes.

Fig. 1: System model

III. PROBLEM FORMULATION

A. System Model

As shown in Fig.1, the system model consists of three
entities: data owner, data user and cloud server.
• Data owner: He encrypts his plain files and constructs a

secure index with private keys. He uploads the ciphertexts
and the secure index to the cloud server. When the data
owner wants to update files, he generates the update
tokens locally and sends them to the cloud server.

• Data user: He is authorized by the data owner who shares
the private keys with him. When he wants to search the
files containing the interested keywords, he sends the
search requests to the cloud server. After the data user
receives the search results from the cloud server, he can
verify the validity of the results.

• Cloud server: It stores the ciphertexts and the secure
index from the data owner. Upon receiving the search
requests from the data user, it performs search operation
over the secure index, and returns the search results. In
addition, upon receiving the update information from the
data owner, it updates the secure index and the related
ciphertexts.

In this model, the data owner and the data user are as-
sumed to be always trusted. That is, the data owner honestly

encrypts files and builds a secure index. The data user honestly
generates the search request for the queried keyword. The
cloud server is regarded as an untrusted entity. It is allowed
to learn which encrypted files contain the queried keyword
by performing the search operation. However, it might try to
learn more valuable information from the encrypted files, the
secure index, and the search trapdoors. For example, it might
try to find which files contain two queried keywords and which
keywords have changed in the modified file. Besides, the cloud
server may return invalid or non-updated search results to the
data user for saving computation cost or other reasons.

B. Design Goals

To address the above challenges, we aim at making the
proposed scheme meet the following goals.
• Supporting efficient keyword search over encrypted cloud

data. The scheme should retrieve all matching files for
the search token and also should achieve sublinear search
efficiency.

• Supporting efficient data dynamic update. The scheme
should support efficient data dynamic update, such as
modification, addition or deletion.

• Supporting efficient search results verification. The user
should be able to verify the correctness of the search
results from the cloud server. The verification should be
based on symmetric-key cryptography and not involve
any complex operation.

• Achieving privacy preserving. The scheme should guaran-
tee that the cloud server cannot learn any useful informa-
tion from the stored ciphertexts and secure index beyond
primitive authorizations. For example, the scheme should
not expose which keywords appear at high-frequency and
which keywords appear at low-frequency. When a file is
added or deleted, the number of keywords in it should not
be leaked to the cloud server. The primitive authorizations
may include the information of encrypted files (i.e. files
sizes and contents), access pattern (i.e. the search results)
and the repetition of search tokens (i.e. the preciously
queried trapdoors).

• Achieving replay attack resistance. When the data needs
to be updated, the cloud server might not perform the
update operation for saving computation cost or soft-
ware/hardware failures. As a result, it might return the
non-updated results to the data user. The scheme should
be able to verify whether the returned results are newly
updated or not.

C. Definitions

1) Scheme Definition:
Definition 1 (Verifiable and Dynamic SSE (VDSSE)

scheme): A verifiable and dynamic SSE scheme includes eight
polynomial-time algorithms i.e. Setup, IndexBuild, GenToken,
Search, Verify, Dec, UpToken and Update. These algorithms
are defined as follows.
• K ← Setup (1λ) is the probabilistic key generation

algorithm run by the data owner. It takes a random secure
parameter λ as input, and outputs a private key set K.
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• (I, C) ← IndexBuild (K,F ,W) is the probabilistic
index building algorithm run by the data owner. It takes
the private key set K, the file set F and the keyword set
W as input, and outputs a secure index I and a ciphertext
collection C.

• Tw ← GenToken (K,w) is the (possibly probabilistic)
trapdoor generation algorithm run by the data user. It
takes the private key set K and the queried keyword w
as input, and outputs the trapdoor Tw.

• (AATS , C(w)) ←Search(Tw, I, C) is the deterministic
search algorithm run by the cloud server. It takes the
trapdoor Tw, the secure index I and the ciphertext set
C as input, and outputs a ciphertext set C(w) and an
authentication tag AATS .

• (accept, reject) ← Verify(K,Tw, C(w), AATS) is the
deterministic verification algorithm run by the data user. It
takes the private key set K, the trapdoor Tw, the set C(w)
and the authentication tag AATS as input, and outputs
“accept” or “reject”.

• F (w)← Dec (K,C(w)) is the deterministic decryption
algorithm run by the data user. It takes the private key
set K and the set C(w) as input, and outputs a plaintext
set F (w).

• τ ← UpToken (K,F, (F ′)) is the (possibly probabilistic)
update tokens generation algorithm run by the data owner.
When modifying a file, it takes as input the original file
F , the new file F ′ and the private key set K, and outputs
the modify token τm = (τm0

, τm1
, ..., τm|W| , τm|W|+1

),
where τm0

is the identifier of the modified file, τmi
= {<

modval >, “mod”}(1 ≤ i ≤ |W|) and τm|W|+1
= C ′.

When adding a file, it takes as input a new file F and
the private key set K, and outputs the add token τa =
(τa0 , τa1 , ..., τa|W| , τa|W|+1

), where τa0 is the identifier of
the added file, τai = {< addval >, “add”}(1 ≤ i ≤
|W|) and τa|W|+1

= C. When deleting a file, it takes as
input the deleted file F and the private key set K, and out-
puts the delete token τd = (τd0 , τd1 , ..., τd|W| , τd|W|+1

),
where τd0 is the identifier of the deleted file, τdi = {<
delval >, “del”}(1 ≤ i ≤ |W|) and τd|W|+1

= C.
• (I ′, C′) ← Update (τ, I, C) is the deterministic update

algorithm run by the cloud server. It takes as input the
update token τ , the secure index I, and the ciphertext
collection C. It outputs a new secure index I ′, and a new
ciphertext collection C′.

2) Security Definitions:
Definition 2 (Update reliability): A verifiable and dynamic

SSE scheme guarantees the update reliability, that is, resists
the replay attack if for any probabilistic polynomial-time
(PPT) adversary A, the probability of successfully giving the
non-updated search results that can pass the verification is
negligible for any (F ,W, I) and trapdoor Tw.

Specifically, as the cloud server is untrusted, it may not
update the secure index and the ciphertext collection when the
data owner sends the update request. When the cloud server
receives the search request from the data user, it may return
the non-updated data to the data user. The data user should be
able to detect whether the results are the latest ones. Given an
updated and valid C(w) and an authentication tag AATS for a

search token, the adversary wins if he can give a non-updated
value (C ′(w), AAT′S) that passes the Verify algorithm.

Definition 3 (Verifiability): A verifiable and dynamic SSE
scheme satisfies verifiability if for any PPT adversary A,
the probability of successfully forging the search results is
negligible for any (F ,W, I) and trapdoor Tw.

Specifically, because the cloud server is untrusted, it may
return incorrect search results to the data user. The data
user should be able to detect such misbehavior to guarantee
the validity of search results. Given a valid C(w) and an
authentication tag AATS for a search token, the adversary wins
if he can give a forgery (C ′(w), AAT′S) that passes the Verify
algorithm.

Definition 4 (CKA2-security): Let Π = (Setup, IndexBuild,
GenToken, Search, Verify, Dec, UpToken and Update)
be a verifiable and dynamic SSE scheme and L =
{Lsetup,Lsearch,Lupdate} be a leakage function set. Let A
be an adversary and S be a simulator. For A and S, we define
the following experiments:
• RealA(λ) : the challenger runs Setup(1λ) to generate

the private key set K. A outputs the file set F and
the keyword set W . The challenger computes (I, C) ←
IndexBuild(K,F ,W), and sends I, C to A. A makes a
polynomial number of adaptive queries. For each query,
A receives a search token Tw ← GenToken (K,w), or a
modify token τm, or an add token τa, or a delete token
τd from the challenger, where τm, τa, τd ←UpToken
(K,F, (F ′)). Finally, A returns a bit b that is output by
the experiment.

• IdealA,S(λ) : A outputs the file set F and the keyword
set W . Given Lsetup(F ,W), S generates a pair (I ′, C′)
and sends it to A. A makes a polynomial number of
adaptive queries. For each query, S is given Lsearch(w),
or Lupdate(F ). Meanwhile, S simulates and sends a
search token T ′w, or a modify token τ ′m, or an add token
τ ′a, or a delete token τ ′d to A. Finally, A returns a bit b
that is output by the experiment.

We say Π is (Lsetup,Lsearch,Lupdate)-secure against adaptive
chosen-keyword attacks(CKA2) if for any PPT adversary A,
there exists a PPT simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]|≤ negl(λ),

where negl stands for a negligible function.

IV. VERIFIABLE AND DYNAMIC SSE (VDSSE) SCHEME

For convenience, we summarize some common notations
throughout the paper shown in Table.1.

A. Technical Overview

1) Accumulative Authentication Tag: Some existing veri-
fiable literatures [41–44] adopt the Message Authentication
Code(MAC) to achieve verification for search results. Howev-
er, in dynamic SSE scenarios, MAC cannot be used to verify
whether the results returned from the cloud are newly updated
or not, that is, it cannot resist the replay attack [6]. To address
this problem, in this paper, we design a novel and efficient
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TABLE I: Some Frequently used Symbols and
Descriptions

Notations Descriptions
N The number of files
n The number of keywords
W The keyword set
wi The i-th keyword in W
F The file set
Fj The j-th file in F
C The encrypted file set
Cj The j-th encrypted file in C
F (wi) The plain file set containing wi
C(wi) or Si The encrypted file set containing wi
ST The search table
VL The verification list
I The secure index
Twi The search token(trapdoor) of wi
τa The add token
τm The modify token
τd The delete token
Lwi The row list related to wi
Lfj The column list related to Fj
wij The 0/1 bit denoting whether Fj contains wi
vj The update time for file Fj
V The global update number
Ewij The ciphertext of (wij , vj)
AATSi

The authentication tag for wi
p The large prime

Accumulative Authentication Tag(AAT) based on symmetric-
key cryptography to realize the results verification supporting
data update.

Firstly, we interpret one variable and some functions used
in AAT including the global update number V , the pseudo-
random permutation function(PRP) π and the pseudo-random
functions(PRFs) f and P . V is used to denote the total
update times for all files and kept by the data owner. When
a file is updated, V is updated to V + 1. With the current
V , the data user can verify whether the search results are
newly updated or non-updated to resist the replay attack.
π : {0, 1}∗ × Kprp → {0, 1}l is used to generate the
keyword permutation πKprp

(w) with the key Kprp, where
l = max{ |w||w ∈ W}. f : {0, 1}∗×Kprf → {0, 1}n is used
to encrypt the keyword permutation πKprp(wi) and the global
update number V with the key Kprf , that is, fKprf

(πKprp(w))
and fKprf

(V ). P : {0, 1}∗ × Kp → {0, 1}logN is used
to generate the random value αj (1 ≤ j ≤ N) for each
file Fj , that is, αj ← PKp(j). The above π, f and P
are all polynomial-time computable functions, which cannot
be distinguished from random functions by any probabilistic
polynomial-time adversary.

To simplify the description, we assume all files have the
same size1, and write π(m), f(m) and P (m) instead of
πKprp(m), fKprf

(m) and PKp(m). Let S be the encrypted file
set containing the keyword w and ∆ be the identifier set of
encrypted files in S. For each encrypted file Cj in S, we divide
it into b blocks Mjt ∈ Zp(1 ≤ t ≤ b). For keyword w and the
current global update number V , Accumulative Authentication
Tag(AAT) is defined as follows:

AATS = f(π(w)) + f(V ) +
∑
j∈∆

b∑
t=1

αjMjt,

1Actually, our technique can easily support the situation that the files have
different sizes.

where αj ← P (j).
AAT has the following properties.
Accumulation. AAT can accumulate the files containing a

keyword to generate one authentication tag.
Firstly, assume there is only one encrypted file Ck1 in S for

keyword w and Ck1 is composed by Mk1t ∈ Zp(1 ≤ t ≤ b).
For keyword w and the current global update number V , AAT
is denoted as AATS = f(π(w)) + f(V ) +

b∑
t=1

αk1Mk1t.

Then assume there are total two encrypted files Ck1 and Ck2
in S. Ck1 is composed by Mk1t ∈ Zp and Ck2 is composed
by Mk2t ∈ Zp. Now, AAT is denoted as AATS = f(π(w)) +

f(V ) +
b∑
t=1

αk1Mk1t +
b∑
t=1

αk2Mk2t, that is, AATS = AATS′ +

b∑
t=1

αk2Mk2t, where S′ = S/{Ck2}.
Similarly, assume there are total z encrypted files

Ck1 , Ck2 , ..., Ckz in S. Then, AAT is denoted as AATS =

f(π(w)) + f(V ) +
∑
j∈∆

b∑
t=1

αjMjt = f(π(w)) + f(V ) +

b∑
t=1

αk1Mk1t + · · ·
b∑
t=1

αkzMkzt, that is, AATS = AATS′ +

b∑
t=1

αkzMkzt, where S′ = S/{Ckz}.
Update. Owing to the accumulation property, AAT can

support data update conveniently. For keyword w, assume
there are z encrypted files Ck1 , Ck2 , ..., Ckz in S. Let ∆ be
the identifier set of files in S and Mkjt ∈ Zp(1 ≤ t ≤ b) be
the t-th block of Ckj (1 ≤ j ≤ z). When the data is updated,
V will be updated to V + 1. The data update includes the
following three cases.

Case 1: The file Fk needs to be modified to F ′k.
• If both Fk and F ′k contain w, then update AATS = AATS+

f(V +1)−f(V )+
b∑
t=1

αkM
′
kt−

b∑
t=1

αkMkt, where M ′kt ∈ Zp
is the t-th block of C ′k. Modify Ck to C ′k in S.

• If Fk contains w while F ′k does not, then update AATS

= AATS + f(V + 1)− f(V )−
b∑
t=1

αkMkt. Delete Ck from

S and delete k from ∆.
• If Fk does not contain w while F ′k does, then update

AATS = AATS + f(V + 1) − f(V ) +
b∑
t=1

αkM
′
kt. Add C ′k

into S and add k into ∆.
• If both Fk and F ′k do not contain w, then update AATS

= AATS + f(V + 1)− f(V ).
Case 2: The file Fkz+1

needs to be added.
• If Fkz+1

does not contain w, then update AATS = AATS+
f(V + 1)− f(V ).

• If Fkz+1 contains w, then update AATS = AATS + f(V +

1)− f(V ) +
b∑
t=1

αkz+1M(kz+1)t. Add Ckz+1
to S and add

its identifier to ∆.
Case 3: The file Fk needs to be deleted.
• If Fk does not contain w, then update AATS = AATS +

f(V + 1)− f(V ).
• If Fk contains w, then update AATS = AATS+f(V +1)−

f(V ) −
b∑
t=1

αkMkt. Delete Ck from S and delete k from

∆.
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Fig. 2: The secure index structure

Collision resistance. For keyword w, assume the correct
encrypted file set is S = {Ck1 , ..., Ckz} and the correct tag is
AATS . We will prove that if an adversary A can forge a set
S′ (S′ 6= S) satisfying AATS′ = AATS , then A breaks the
security of PRF P .

Let S′ = {C ′k1 , ..., C
′
kz′
}. Without loss of generality, assume

z′ ≤ z. Let ∆ be the identifier set of files in S and Λ
be the identifier set of the same files between S and S′. If
kj ∈ Λ, C ′kj = Ckj ; otherwise, C ′kj 6= Ckj (1 ≤ j ≤ z′)
or Ckj ∈ S (z′ < j ≤ z). Since AATS - AATS′ = 0, we

have
∑

kj∈∆/Λ

b∑
t=1

αkjM
′′
kjt

= 0, where M ′′kjt = Mkjt − M ′kjt

(1 ≤ j ≤ z′) and M ′′kjt =Mkjt (j > z′).
For simplicity, assume Λ = {k1, k2, ..., kr} (r ≤ z′) and

∆/Λ = {kr+1, ..., kz}. We have

(1)αkr+1

b∑
t =1

M ′′kr+1t + · · ·+ αkz

b∑
t =1

M ′′kzt = 0

A is allowed to query P oracle up to z − 1 times. Without
loss of generality, assume A has queried αk1 , ..., αkz−1

from
P oracle. According to equation (1), A can compute

(2)αkz =

−(αkr+1

b∑
t=1

M ′′kr+1t
+ · · ·+ αkz−1

b∑
t=1

M ′′kz−1t
)

b∑
t=1

M ′′kzt

.

Note that, the denominator
b∑
t=1

M ′′kzt is zero only with

negligible probability. It means the adversary A can give a
valid forgery PKp

(kz) without knowing the key Kp with high
probability, which is contradictory to the security of PRF P .
Therefore, our proposed AAT satisfies collision resistance.

2) The Secure Index Structure: In our work, we design
a new secure index consisting of a search table ST and a
verification list VL.

Let SKE = (Gen,Enc,Dec) be a symmetric encryption
scheme. Algorithm Gen is used to generate the private keys.
Algorithm Enc(Dec) is used to encrypt(decrypt) files and
some information in the secure index. Let H : {0, 1}∗ ×
Kh → Zq be an HMAC with the key Kh. We use it

to generate the key Kwi
for each keyword wi by com-

puting Kwi ← HKh
(wi). For simplicity, we write H(m)

instead of HKh
(m). We encrypt the index vector bit wij

and the update times vj with the key Kwi
by computing

Ewij ←SKE.EncKwi
(wij , vj), where wij denotes whether

the file Fj contains the keyword wi and vj represents the
update times for Fj . If Fj contains wi, wij = 1; otherwise,
wij = 0. Initially, set vj = 1.

ST is based on the orthogonal list. It consists of n row
lists and N + 1 column lists. Each row list is related to each
keyword. The i-th row list is denoted as Lwi

(1 ≤ i ≤ n),
which consists of one head node and N index nodes. Each
column list is related to each file. The j-th column list
is denoted by Lfj (0 ≤ j ≤ N). The head node, also
named look-up node, records the location information of each
keyword. Let π(wi) be the value of the head node(look-up
node), which helps the cloud server locate the position of the
queried keyword. Each index node stores Ewij . When a file is
modified, the state of some keywords might change, i.e, some
are in the previous file but not in the modified file, or some
are not in the previous file but in the modified file. To prevent
the cloud server from knowing which keywords have changed
between the new file and the previous file, we will update all
index nodes in the related column list. So we introduce the
update times vj and make it increase with the file update. All
the values of index nodes in the related column list will be
modified. As a result, the cloud server will not learn which
keywords have changed in the new file. The privacy of the
updated files can be preserved in this way.

VL is a singly linked list containing one head node and n
verification nodes. The data field of the head node is empty
and the pointer field stores the address of the next node. The
verification node stores the authentication tag AATS generated
by AAT.

We show the detailed secure index structure in Fig.2.

B. Construction of VDSSE scheme

In this section, we give the overview of core algorithms and
the detailed description of the proposed scheme, and illustrate
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some simple examples to articulate the update operations.

1) Overview of core algorithms: In algorithm IndexBuild,
the data owner builds the secure index I =(ST,VL). In ST,
each row list Lwi

(1 ≤ i ≤ n) is associated with one keyword
wi. The head node of each row list stores the keyword per-
mutation π(wi) as the address of this list. All head nodes are
linked to the first column list Lf0 , which are used as look-up
nodes for cloud server. The index node of each row list stores
the ciphertext Ewij = SKE.EncKwi

(wij , vj) (1 ≤ j ≤ N)
related to an index vector bit wij and the update times vj .
All index nodes in the same column are linked to the column
list Lfj , which corresponds to the file Fj . For each keyword
wi, the authentication tag AATSi stored in the index node of
VL is computed based on the accumulation property of AAT.
When the data user would like to search files containing the
interested keyword, he generates the trapdoor through algorith-
m GenToken. The cloud server can perform search operation
through algorithm Search. In algorithm Verify, the data user
computes the authentication tag for returned ciphertexts, and
checks whether these ciphertexts are correct according to the
authentication tag.

In algorithm UpToken, the data owner generates update
tokens for the updated files. Each token is composed by
n + 2 elements. The first element denotes the identifier of
the updated file and the last element denotes the ciphertext of
the updated file. Each middle element includes the values of
updated index nodes in ST and the update value of AAT in
VL. Owing to the connectivity and the flexibility of orthogonal
list, the cloud server can update the secure index efficiently
in algorithm Update. In modify operation, the cloud server
replaces the value of each index node related to the updated
file with the new one in ST and updates AAT value in VL
according to the update value. In add operation, the cloud
server adds a new column list in ST and updates AAT value
in VL according to the update value. In delete operation, the
column list related to this file in ST is deleted directly. The
cloud server only needs to update AAT value in VL. Owing to
the accumulation and the update property of AAT, the values
of index nodes in VL can be conveniently updated.

2) Scheme construction: The detailed scheme description
are as follows.

Setup(1λ): Generate a private key set K =
{Kenc,Kprf ,Kprp,Kh,Kp} by inputting a secure parameter
λ.
IndexBuild(K,F ,W):

1) Initialization:
a) scan F to extract all different keywords and build W;
b) initialize the update times vj to 1 for each file Fj and

the global update number V to 1;
c) compute C =SKE.EncKenc(F) and αj = P (j) for

each encrypted file Cj ∈ C (1 ≤ j ≤ N);
d) divide each Cj into b blocks Mjt ∈ Zp (1 ≤ t ≤ b).

2) Build ST:
a) for each keyword wi ∈ W (i = 1→ n):
• construct a linked list Lwi with one head node and
N index nodes;

• compute π(wi) as the value of head node and Kwi =
H(wi);

• for j = 1→ N :
– if Fj contains wi, then set wij = 1;

else, set wij = 0;
– compute Ewij =SKE.EncKwi

(wij , vj) as the
value of the j-th index node.

b) Chain all nodes in the same column list together to
obtain a column list Lfj .

3) Build VL:
a) construct a singly linked list L′ with a head node storing

the address of the first node;
b) for each keyword wi ∈ W (i = 1→ n):
• let Si be the encrypted file set of containing wi;
• initialize AATSi = f(π(wi)) + f(V );
• for j = 1→ N :

– if Cj ∈ Si, then compute AATSi =AATSi +
b∑
t=1

αjMjt.

• let AATSi be the value of the i-th node related to
wi.

4) Output the secure index I = (ST,VL) and the ciphertext
collection C.

GenToken(K,wk):
• Output the trapdoor Twk = (π(wk),Kwk ), where Kwk ←
H(wk).

Search(Twk , I, C):
1) Parse Twk = (η, θ) and find the related row list Lwk

according to η;
2) Decrypt each index node SKE.EncKwi

(wij , vj) with θ to
obtain (wij , vj);
• if wij = 1, then add Cj to the collection C(wk);

3) Take out AATSk from VL according to η;
4) Output C(wk) and AATSk .

Verify(K,Twk , C(wk),AATSk ) :

1) Parse Twk as Twk = (η, θ) and initializes AAT′Sk
=

f(η) + f(V );
2) for each encrypted file Cj ∈ C(wk):

• divide Cj into b blocks Mjt ∈ Zp (1 ≤ t ≤ b);
• compute αj = P (j) and AAT′Sk

=AAT′Sk
+

b∑
t=1

αjMjt.

3) if AAT′Sk
=AATSk , then return “accept”;

else, return “reject”.
Dec(K,C(wk)):
• Computes F =SKE.DecKenc(C) with the key Kenc for

each encrypted file C in C(wk).
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UpToken(K,Fk, (F ′k)):
1. Modify token τm (modify Fk to F ′k):

a) Compute the ciphertext C′k =SKE.EncKenc(F
′
k) and the

random value αk = P (k), and set the update times vk =
vk + 1;

b) Divide C′k into b blocks M ′kt ∈ Zp (1 ≤ t ≤ b);
c) Set τm0 = k;
d) for each keyword wi ∈ W (i = 1→ n):
• compute Kwi = H(wi) and the middle modify to-

ken is τmi = {< τmi .modval[1], τmi .modval[2] >
, “mod”};

• if wi ∈ F ′k and wi ∈ Fk, then set w′ik = 1, and
compute τmi .modval[1] =SKE.EncKwi

(w′ik, vk) and

τmi .modval[2] = f(V + 1) − f(V ) +
b∑
t=1

αkM
′
kt −

b∑
t=1

αkMkt.

• else if wi ∈ F ′k and wi /∈ Fk, then set w′ik = 1, and
compute τmi .modval[1] =SKE.EncKwi

(w′ik, vk) and

τmi .modval[2] =
b∑
t=1

αkM
′
kt + f(V + 1)− f(V ).

• else if wi /∈ F ′k and wi ∈ Fk, then set w′ik = 0, and
compute τmi .modval[1] =SKE.EncKwi

(w′ik, vk) and

τmi .modval[2] = f(V + 1)− f(V )−
b∑
t=1

αkMkt.

• else if wi /∈ F ′k and wi /∈ Fk, then set w′ik = 0, and
compute τmi .modval[1] =SKE.EncKwi

(w′ik, vk) and
τmi .modval[2] = f(V + 1)− f(V ).

e) Set τmn+1 = Ck;
f) Update V = V + 1;
g) Output the modify token τm = (τm0 , ..., τmn+1);

2. Add token τa (add FN+1):
a) Compute the ciphertext CN+1 =SKE.EncKenc(FN+1)

and the random value αN+1 = P (N + 1), and set the
update times vN+1 = 1 ;

b) Divide CN+1 to b blocks M(N+1)t ∈ Zp (1 ≤ t ≤ b);
c) Set τa0 = N + 1;
d) for each keyword wi ∈ W (i = 1→ n):
• compute Kwi = H(wi) and the middle add token is
τai = {< τai .addval[1], τai .addval[2] >, “add”};

• if wi ∈ FN+1, then set wi(N+1) = 1 and com-
pute τai .addval[1] =SKE.EncKwi

(wi(N+1), vN+1)

and τai .addval[2] =
b∑
t=1

αN+1M(N+1)t+f(V +1)−

f(V ).
• else, set wi(N+1) = 0 and compute
τai .addval[1] =SKE.EncKwi

(wi(N+1), vN+1)
and τai .addval[2] = f(V + 1)− f(V ).

e) Set τan+1 = CN+1;
f) Update V = V + 1;
g) Output the add token τa = (τa0 , τa1 , ..., τan+1).

3. Delete token τd (delete Fk):
a) Compute the ciphertext Ck =SKE.EncKenc(Fk) and the

random value αk = P (k);
b) Divide Ck into b blocks Mkt ∈ Zp (1 ≤ t ≤ b);
c) Set τd0 = k;
d) for each keyword wi ∈ W (i = 1→ n):
• the middle delete token is τdi = {τdi .delval, “del”};
• if wi ∈ Fk, then set τdi .delval = f(V +1)− f(V )−

b∑
t=1

αkMkt.

• else, set τdi .delval = f(V + 1)− f(V ).
e) Set τdn+1 = Ck;
f) Update V = V + 1;
g) Output the delete token τd = (τd0 , τd1 , ..., τdn+1).

Update(τ, I, C) :

1) Modify operation(modify Fk to F ′k, τ = τm):
a) for j = 1→ k (k = τm0):
• find the k-th index node of Lw1 , that is the first node

of the column list Lfk .
b) for each node in Lfk (i = 1→ n):
• replace the value of each node with τmi .modval[1].

c) for each node in VL (i = 1→ n):
• update AATSi =AATSi + τmi .modval[2].

d) Replace Ck with τmn+1 in the ciphertext collection;
e) Output the new secure index I′ and the new ciphertext

collection C′.
2) Add operation (add FN+1, τ = τa):

a) for j = 1→ N (N = τa0 − 1):
• find the last (the N -th) node of Lw1 , that is the first

node of LfN .
b) for each node in LfN (i = 1→ n):
• add a new node with the value of τai .addval[1] right

to each node in LfN ;
• set the right point field of the new node to NULL.

c) Chain all of the new nodes to get the new column list
LfN+1 ;

d) for each node in VL (i = 1→ n):
• update AATSi =AATSi + τai .addval[2].

e) Add the new file τan+1 to the ciphertext collection.
f) Output the new secure index I′ and the new ciphertext

collection C′.
3) Delete operation (delete Fk, τ = τd):

a) if k = N (k = τd0), then find the (N − 1)-th node of
Lw1 , that is the first node of column list LfN−1 .
• for each node in LfN−1 (i = 1→ n):

– set the right point field of each node to NULL,
that is disconnect LfN−1 with LfN ;

– free LfN .
b) if k 6= N , then find the (k − 1)-th node of Lw1 , that

is the first node of column list Lfk−1 .
• for each node in Lfk−1 (i = 1→ n):

– chain each node in Lfk−1 with the related node
in Lfk+1 , that is disconnect Lfk−1 with Lfk and
Lfk with Lfk+1 ;

– free Lfk .
c) for each node in VL (i = 1→ n):
• update AATSi =AATSi + τdi .delval.

d) Delete the file τdn+1 = Ck from the ciphertext collec-
tion;

e) Output the new secure index I′ and the new ciphertext
collection C′.

3) Examples for update operations: In this section, we
give some simple examples to illustrate the update operations.
Assume there are three files F1, F2 and F3 in the file set F
and three keywords w1, w2 and w3 in the key set W .
F1 contains keywords w1 and w3, F2 contains keywords

w1 and w2, and F3 contains keywords w1, w2 and w3. So
S1 = {C1, C2, C3}, S2 = {C2, C3} and S3 = {C1, C3}.
We have w11 = 1, w12 = 1, w13 = 1, w21 = 0, w22 = 1,
w23 = 1, w31 = 1, w32 = 0 and w33 = 1. The update
times v1, v2 and v3 are all initialized to 1. ST contains 3 row
lists (Lw1 , ..., Lw3) and 4 column lists (Lf0 , ..., Lf3). The first
node of each row list Lwi

(1 ≤ i ≤ 3) stores π(wi). The
index node stores SKE.EncKwi

(wij , vj) (1 ≤ j ≤ 3), where
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Fig. 3: Modifying a file Fig. 4: Adding a file

Kwi
= H(wi). VL is a singly linked list composed by one

head node and three index nodes. Each index node in VL stores
the following the authentication tag, AATS1 = f(π(w1)) +

f(V )+
b∑
t=1

α1M1t+
b∑
t=1

α2M2t+
b∑
t=1

α3M3t, AATS2 = f(π(w2))+

f(V )+
b∑
t=1

α2M2t+
b∑
t=1

α3M3t, and AATS3 = f(π(w3))+f(V )+

b∑
t=1

α1M1t +
b∑
t=1

α3M3t, where αj = P (j), V is initialized to

1 and Mjt ∈ Zp is the t-th block of Cj . We now describe the
details of the modifying operation, the adding operation and
the deleting operation.

Assume the data owner modifies the file F1 to F ′1, which
contains keywords w2, w3. The keyword w1 is modified to
w2. The data owner only needs to update v1 = 2 and
set w11 = 0, w21 = 1. v2, v3 and w31 do not need to
be modified. Meanwhile, he modifies S1 = {C2, C3} and
S2 = {C ′1, C2, C3}, and sets τm0

= 1 and τm4
= C ′1. Then he

computes τmi
.modval[1] = SKE.EncKwi

(wi1, v1) (1 ≤ i ≤
3) and some tag value τmi .modval[2], that is, τm1 .modval[2] =

f(V+1)−f(V )−
b∑
t=1

α1M1t, τm2 .modval[2] =
b∑
t=1

α1M
′
1t+f(V+

1)−f(V ), and τm3 .modval[2] =
b∑
t=1

α1M
′
1t−

b∑
t=1

α1M1t+f(V +

1)− f(V ), where M ′1t ∈ Zp is the t-th block of C ′1. Then he
sets V = V + 1 and sends the modify token to the cloud
server.

Owing to the connectivity of orthogonal list, the cloud
server can fleetly find the modified column list Lf1 . It does
not need to search through each row list from scratch, just
needs to find the first index node of Lf1 along with Lw1

and updates all nodes in Lf1 . It replaces the value of each
node in Lf1 with τmi .modval[1] (1 ≤ i ≤ 3) and replaces
C1 with τm4 . It updates the authentication tag in VL by
adding the related tag value τmi

.modval[2], that is, AAT′S1
=

AATS1 + τm1 .modval[2], AAT′S2
= AATS2 + τm2 .modval[2], and

AAT′S3
= AATS3 + τm3 .modval[2]. This example is shown in

Fig.3.

Assume the data owner adds a new file F4 containing
keywords w2 to the file collection. The data owner sets v4 = 1,
w14 = 0, w24 = 1, w34 = 0, τa0 = 4 and τa4 = C4, and
modifies S2 = {C2, C3, C4}. He computes τai .modval[1] =
SKE.EncKwi

(wi4, v4) (1 ≤ i ≤ 3), and the related tag value
τai .modval[2], that is, τa1 .modval[2] = τa3 .modval[2] = f(V +

1)− f(V ), and τa2 .modval[2] =
b∑
t=1

α4M4t + f(V + 1)− f(V ),

where α4 = P (4) and M4t ∈ Zp is the t-th block of C4. Then
he sets V = V +1 and sends the add token to the cloud server.

Owing to the flexibility of orthogonal list, the cloud server
only needs to find the third index node of Lw1

, that is, the
first node of Lf3 . It adds a new node next to each node of
Lf3 from the first node to the last node, and adds τa4 to the
ciphertext set. The cloud server computes the new tag value in
VL as AAT′S1

(or AAT′S3
) =AATS1(or AATS3) + τa1 .modval[2],

and AAT′S2
=AATS2 + τa2 .modval[2]. This example is shown

in Fig.4.
Assume the data owner deletes a file F2 containing key-

words w1 and w2 from the file collection. The data owner
sets τd0 = k and τd4 = C2, and computes the related tag
value τdi .delval(1 ≤ i ≤ 3), that is, τd1 .delval = τd2 .delval =

f(V +1)−f(V )−
b∑
t=1

α2M2t, and τd3 .delval = f(V +1)−f(V ).

He updates V = V +1 and gives the delete token to the cloud
server.

The cloud server firstly finds the first index node of Lw1 ,
that is, the first node of Lf1 . Then it chains Lf1 with Lf3 and
deletes Lf2 . Finally, it updates the tag AATSi

(1 ≤ i ≤ 3) in
VL, that is, AAT′S1

( or AAT′S2
) =AATS1( or AATS2)+τd1 .delval,

and AAT′S3
=AATS3 + τd3 .delval. This example is shown in

Fig.5.

Fig. 5: Deleting a file

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme in term of update reliability, verifiability and CKA2-
security.
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Theorem 1: The proposed VDSSE scheme satisfies update
reliability.
Proof. Assume a PPT adversary A does not update the secure
index or the ciphertext collection when the data owner requires
to update some files. We will prove that if A returns the non-
updated result, the verification algorithm will output “reject”.

Assume the returned result is (C ′(w),AATS′), the corre-
sponding global update number is V ′ and ∆′ is the iden-
tifier set of files in C ′(w). C ′j ∈ C ′(w) is composed by
M ′jt ∈ Zp (1 ≤ t ≤ b). We have

AATS′ = f(π(w)) + f(V ′) +
∑
j∈∆′

b∑
t=1

αjM
′
jt (3)

Now the secure index and the ciphertext collection are updated
x (x ≥ 1) times again. So the current global update number
is V = V ′ + x. The verified AAT′S′ is computed by V , that
is,

AAT′S′ = f(π(w)) + f(V ) +
∑
j∈∆′

b∑
t=1

αjM
′
jt (4)

If the non-updated result passes the verification, the adversary
A can get f(V ) = f(V ′) by subtracting equation (4) from
equation (3). It means the adversary A can find a V and a
V ′ satisfying f(V ) = f(V ′), which is contradictory to the
security of PRF f . Therefore, our proposed scheme satisfies
the update reliability.

Theorem 2: The proposed VDSSE scheme satisfies verifia-
bility.
Proof. Assume that A is a PPT adversary who can
give a forgery (C ′(w),AATS′) (S′ = C ′(w)) such
that the verification algorithm Verify(K,AATS′ , C ′(w), Tw)
outputs “accept”. Assume the correct search result is
(C(w),AATS) (S = C(w)). We will prove that there is
no such an adversary A who can give a forgery satisfying
(C ′(w),AATS′) = (C(w),AATS).

Let ∆ be the identifier set of files in C(w) and Cj ∈ C(w)
be composed by Mjt ∈ Zp (1 ≤ t ≤ b). Similarly, let ∆′

be the identifier set of files in C ′(w) and C ′j ∈ C ′(w) be
composed by M ′jt ∈ Zp (1 ≤ t ≤ b). Assume Λ is the
identifier set of the same files between C(w) and C ′(w), and
|S′|≤ |S|.

We consider the following three cases:
Case 1: C ′(w) = C(w) and AATS′ 6= AATS . We

have AATS′ = f(π(w)) + f(V ) +
∑
j∈∆′

b∑
t=1

αjM
′
jt and

AATS =f(π(w)) + f(V ) +
∑
j∈∆

b∑
t=1

αjMjt. Since C ′(w) =

C(w), we have AATS′ = AATS . This is contradictory to
AATS′ 6= AATS . So this case does not hold.

Case 2: C ′(w) 6= C(w) and AATS′ =AATS . It means A
can find a collision for AAT. It is contradictory to the collision
resistance of AAT described in section 4.1.1. Therefore, this
case also does not hold.

Case 3: C ′(w) 6= C(w) and AATS′ 6=AATS . We have

AATS′ = f(π(w)) + f(V ) +
∑
j∈∆′

b∑
t=1

αjM
′
jt and AATS =

f(π(w)) + f(V ) +
∑
j∈∆

b∑
t=1

αjMjt. For simplicity, assume

Λ = {k1, k2, ..., kr} (r ≤ |S′|) and ∆/Λ = {kr+1, ..., k|S|}.
Let d = AATS− AATS′ . We have

d = αkr+1

b∑
t=1

M ′′kr+1t + · · ·+ αk|S|

b∑
t=1

M ′′k|S|t, (5)

where M ′′kjt = Mkjt − M ′kjt(1 ≤ j ≤ |S′|) and M ′′kjt =
Mkjt(j > |S′|). A is allowed to query P oracle up to
|S|−1 times. Without loss of generality, assume A has queried
αk1 , ..., αk|S|−1

from P oracle. According to equation (5), A
can compute

αk|S| =

d− (αkr+1

b∑
t=1

M ′′kr+1t
+ · · ·+ αk|S|−1

b∑
t=1

M ′′k|S|−1t
)

b∑
t=1

M ′′k|S|t

.

(6)

Note that, the denominator
b∑
t=1

M ′′k|S|t is zero only with

negligible probability. It means the adversary A can compute
PKp

(k|S|) without knowing the key Kp with high probability,
which is contradictory to the security of PRF P . Therefore,
the proposed VDSSE scheme satisfies the verifiability.

Theorem 3: If PRFs f, π, P are all pseudo-random and
cryptographic primitives and SKE scheme is secure against
chosen-plaintext attack (CPA-secure), then our scheme is L =
{Lsetup,Lsearch,Lupdate}-secure against adaptive chosen-
keyword attacks(CKA2) in the standard model.
Proof. We describe a polynomial-time simulator S such that
for any PPT adversary A, the outputs of RealA(λ) and Ide-
alA,S(λ) are computationally indistinguishable. In RealA(λ)
experiment, A receives {I, C, τ = {Tw, τm, τa, τd}} from
the challenger. In IdealA,S(λ) experiment, the simulator S
generates a simulated secure index I ′=(ST

′
,VL

′
), a simulated

ciphertexts C′, and the simulated tokens τ ′ = {T ′w, τ ′m, τ ′a, τ ′d}
for the information Lsetup,Lsearch,Lupdate. We prove that
A cannot distinguish between experiments Real and Ideal.
In other words, A cannot distinguish between {I, C, τ} and
{I ′, C′, τ ′}.

Simulating I ′: The simulated secure index I ′ can be
constructed similarly to a real secure index, except that node
information is replaced by ciphertext of the zero string (of
appropriate length) and the outputs of PRFs are replaced by
random values.
S initializes |W| lists Lwi (1≤i≤|W|) with |C|+1 nodes for

ST
′
. S randomly selects |W||C| bit strings Ew′ij(1≤j≤|C|) for

each node of Lwi . S initializes VL
′

with |W|+1 nodes. S sets
I ′ = (ST

′
,VL

′
), where ST

′
= Ew′ij and VL

′
= AAT′Si

.
The CPA-security of the encryption algorithms and the

pseudo-randomness of the PRFs will guarantee that the simu-
lated secure index I ′ = (ST

′
,VL

′
) is indistinguishable from I

= (ST,VL) for A.
Simulating C′: The simulated cipher files C′ =
{C ′1, ..., C ′|C|} are simulated in the same manner as the simu-
lated secure index (i.e., replacing the cipher files by ciphertexts
of the all zero strings) and the CPA-security of the encryption
algorithms guarantees indistinguishability.

Given the leakage function Lsetup(F ,W), S randomly
selects a bit string (C ′j)(1≤j≤|C|) of length |Cj |. As the encryp-
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tion algorithms are CPA-secure, C′ and C are indistinguishable
to A.

Simulating τ ′: S computes the search token T ′w, the modify
token τ ′m, the add token τ ′a and the deleted token τ ′d according
to Lsearch, Lupdate. We give the analysis from the following
four cases.

Case 1: T ′w is a search token.
If T ′w is the first search query, S randomly selects a

π′(w) that has not been selected before. For each query
w, there exists a key K ′w corresponding to it. S computes
K ′w ← H(w), and sets T ′w = (π′(w),K ′w).

If the k-th query T ′w is the same as a prior query, S sets
T ′w = (π′(w)k, (K

′
w)k).

Case 2: τ ′m is a modify token.
S first randomly selects a bit string Ew′ij (1 ≤ i ≤ |W|), a

bit string C ′j of length |Fj |, and a bit string C̃ ′j of length |F ′j |.
Then S divides C̃ ′j and C ′j into b blocks, and uses M̃ ′jt and
M ′jt to denote the t-th block. Finally, S computes α′j ← P (j),

and sets τ ′m.modval =< Ew′ij ,
b∑
t=1

α′jM̃
′
jt+ f(V +1)− f(V ) > or

< Ew′ij , f(V +1)−f(V )−
b∑
t=1

α′jM
′
jt > or < Ew′ij ,

b∑
t=1

α′jM̃
′
jt+

f(V +1)− f(V )−
b∑
t=1

α′jM
′
jt > or < Ew′ij , f(V +1)− f(V ) >.

Case 3: τ ′a is an add token.
S first randomly selects a bit string Ew′ir (1 ≤ i ≤ |W|),

and a bit string C ′r of length |F ′r|, where r denotes the identifier
of the added file F ′r. Then S divides C ′r into b blocks, and uses
M ′rt to denote the t-th block. Finally, S computes α′r ← P (r),

and sets τ ′a.addval =< Ew′ir,
b∑
t=1

α′rM
′
rt + f(V + 1)− f(V ) > or

< Ew′ir, f(V + 1)− f(V ) >.
Case 4: τ ′d is a delete token.
S first randomly selects a bit string C ′j of length |F ′j |. Then

S divides C ′j into b blocks, and uses M ′jt to denote the t-th
block. Finally, S computes α′j ← P (j), and sets τ ′d.delval =<

f(V + 1)− f(V )−
b∑
t=1

α′jM
′
jt > or < f(V + 1)− f(V ) >.

In such a way, S simulates the correct search/update tokens
which have the same result as that in the experiment Real.
Therefore, A cannot distinguish between τ and τ ′.

In conclusion, A cannot distinguish between the result in
the experiment Real and the result in the experiment Ideal.
That is,

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]|≤ negl(λ).

Therefore, our proposed scheme satisfies CKA2-security.

VI. PERFORMANCE AND EXPERIMENTS

In this section, we analyze the performance of the proposed
VDSSE scheme. Experiments are implemented using C++
language on a Linux OS equipped with 2.4GHz Inter(R)
Core(TM) i5 CPU and 4GB RAM, and constructed on a real-
world data set [45].

Index construction efficiency. To evaluate the efficiency
of our proposed schemes, we conduct the experiments for
building ST and building VL. Fig.6 shows the time cost of
building the secure index when the number of files is set to

10000 and the number of keywords varies from 1000 to 10000.
We can observe that the time cost grows linearly with the
number of keywords. In our scheme, as the row list number in
ST equals to the number of keywords, the increase of the row
list number leads to the increase of ST construction time cost.
As the node number in VL equals to the number of keywords,
the increase of the node number leads to the increase of VL
construction time. Fig.7 shows the time cost of building the
secure index when the number of keywords is set to 10000
and the number of files varies from 1000 to 10000. We can
observe that the time cost of building index grows linearly
with the number of files. In our scheme, as the column list
number in ST equals to the number of files, the increase of
the column list number leads to the increase of ST construction
time cost. The time cost of computing tags in VL is related
to the number of files.

Update token generation efficiency. Fig.8 shows that the
generation time for update tokens, i.e., modify token, add
token and delete token, is almost linear with the number of
keywords. Since the computation for modify token generation
is more than that for add token generation and that for delete
token generation, the time cost of modify token generation is
a little longer.

Search efficiency. The cloud server respectively performs
search operations in ST and VL. In Fig.9, we vary the number
of files from 1000 to 10000 and set the number of keywords
to 10000. We can observe that the search time cost in ST is
nearly linear with the number of files. In Fig.10, we vary the
number of keywords from 1000 to 10000 and set the number
of files to 10000. As the search time is mainly related to the
time of locating the queried keyword, its cost is nearly linear
with the number of keywords. Fig.11 shows that the search
time cost in VL is nearly linear with the number of keywords.
As the node number in VL equals to the number of keywords,
the increase of node number leads to the increase of search
time.

Because the secure index is built offline and building the
index is just a one-time operation by the user, we did not
compare its efficiency in our scheme with that in another
scheme. We compare the performance of our scheme with that
of scheme [10] in terms of search token generation efficiency,
verification efficiency and update efficiency. The reason that
we choose scheme [10] as a benchmark is mainly because it
is generally viewed as the most typical verifiable SSE scheme.

Search token generation efficiency. We compare the search
token generation time cost of our scheme with that of scheme
[10] shown in Fig.12. The time cost of search token generation
is almost linear with the number of files in Sun’s scheme [10],
while that is almost constant in our VDSSE scheme. Because
the bit string length in search token equals to the number of
files in scheme [10], the increase of the bit string length leads
to the increase of search token generation cost. In contrast, the
cost of search token generation is irrelevant to the number of
files in our scheme.

Verification efficiency. We compare the verification time
cost of our scheme with that of scheme [10] shown in Fig.13.
We can see that the verification efficiency in our scheme
is much higher than that in scheme [10]. The scheme [10]
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Fig. 6: Secure index
construction time cost

Fig. 7: Secure index
construction time cost

Fig. 8: Modify token
generation time cost

Fig. 9: Search time cost in
ST

Fig. 10: Search time cost
in ST

Fig. 11: Search time cost
in VL

Fig. 12: The time cost of
search token generation

Fig. 13: The time cost of
verification

Fig. 14: Modifying time cost Fig. 15: Adding time cost Fig. 16: Deleting time cost

utilizes the bilinear-map accumulator to verify the search
results. The bilinear-map accumulator is based on asymmetric-
key cryptography involving time-consuming operations. In
contrast, we design a novel accumulative authentication tag
based on symmetric-key cryptography to achieve verification
in our scheme. As shown in Fig.13, when the number of files
containing the queried keyword is about 200, the verification
time is about 0.36ms in our scheme, while it is about 5ms in
scheme [10]. When the number of files containing the queried
keyword is about 2000, the verification time is about 0.75ms
in our scheme, while it is nearly 50ms in scheme [10].

Update efficiency. We compare the update time cost of our
scheme with that of scheme [10] shown in Fig.14, Fig.15 and
Fig.16. As the node number in the updated column list equals
to the number of keywords, the increase of the node number
leads to the increase of update time. Therefore, the update time
is proportional to the number of keywords. We can observe
that the update efficiency in our scheme is clearly higher than
that in scheme [10]. The main reason for the promotion of
update efficiency is that the cloud server only needs to find
the updated column list in the first row list, while does not

search each row list from scratch in our scheme.

VII. DISCUSSION

In this section, we discuss how to prevent the cloud server
from learning the number of keywords and how to add a new
keyword in the original keyword set. We will give potential
solutions to these problems.

1) Hiding the number of keywords. In our VDSSE
scheme, we construct a row list for each keyword. The
cloud server can know the number of keywords by the
number of row lists. If we consider to hide the number
of keywords, we can extend the secure index by padding
dummy value [21]. Assume that each keyword is at most
l bits and the number of keywords is at most 2l, n ≤ 2l.
We will enlarge the number of row lists to 2 · 2l to
ensure that the number of linked lists is larger than that
of keywords. We select 2·2l−n dummy values dumk(the
short of ”dummy”) and 2 · 2l−n random 0/1 bit denoted
by pwkj (1 ≤ k ≤ 2 · 2l − n, 1 ≤ j ≤ N ). To update
the index nodes by the keyword order, we pad these
2 ·2l−n dummy values into the last remaining positions.
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The value of each index node is set SKE.Enc(pwkj , vj)
generated with the key Kwdumk

. Meanwhile, we also need
to enlarge VL to 2 ·2l. The remaining 2 ·2l−n positions
are padded with dumk.

2) Adding a new keyword. We have extracted all different
keywords from the original files before constructing the
secure index. When a new file is added, the file might
contain a new keyword except the original keywords.
In this case, we need to add the new keyword to the
keyword set and update the secure index. We assume
the added file is FN+1 and the new keyword is wn+1.
Obviously, wn+1 only appears in FN+1. So we know that
w(n+1),1 = ... = w(n+1),N = 0 and w(n+1)(N+1) = 1.
We can generate Kwn+1 ← H(wn+1) and αj ← P (j),
and update the global update number V = V + 1. The
cloud server updates the value of the (n + 1)-th linked
list (the above generated) with SKE.Enc(w(n+1)j , vj)
using the key Kwn+1

, and also updates the (n + 1)-th
verification node in the verification list with AATSn+1 =

f(π(wn+1)) + f(V ) +
b∑
t=1

αN+1M(N+1)t.

We give a simple example with 3 keywords and 3 files to
show the detailed structure with padding and with adding a
new keyword in Fig.17. There are 2l+1 row lists in ST and
2l+1 nodes in VL. As shown in Fig.17, 3 row lists are padded
with the real values and 2l+1 − 3 row lists are padded with
dummy values in ST. As same as ST, 3 nodes are padded with
real values and 2l+1−3 nodes are padded with dummy values
in VL. When a new file containing a new keyword is added,
the cloud server replaces the values of nodes in the 3-th row
list of ST with the add token, and updates the value of the
3-th node in VL.

Fig. 17: The secure index with padding dummy values and
adding a new keyword

VIII. CONCLUSION

In this paper, we explore realizing keyword search over
dynamic encrypted cloud data with symmetric-key based veri-
fication. In order to support the efficient verification of dynam-
ic data, we design a novel Accumulative Authentication Tag
(AAT) based on symmetric-key cryptography to generate an
accumulative authentication tag for each keyword. Moreover,
a new secure index based on the orthogonal list and the single

linked list is designed to improve the updated efficiency. The
security analysis and the performance evaluation show that the
proposed scheme is secure and efficient.
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