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Abstract—Enabling cryptographically enforced access controls
for data hosted in untrusted cloud is attractive for many users
and organizations. However, designing efficient cryptographically
enforced dynamic access control system in the cloud is still
challenging. In this paper, we propose Crypt-DAC, a system that
provides practical cryptographic enforcement of dynamic access
control. Crypt-DAC revokes access permissions by delegating the
cloud to update encrypted data. In Crypt-DAC, a file is encrypted
by a symmetric key list which records a file key and a sequence
of revocation keys. In each revocation, a dedicated administrator
uploads a new revocation key to the cloud and requests it to
encrypt the file with a new layer of encryption and update the
encrypted key list accordingly. Crypt-DAC proposes three key
techniques to constrain the size of key list and encryption layers.
As a result, Crypt-DAC enforces dynamic access control that
provides efficiency, as it does not require expensive decryption/re-
encryption and uploading/re-uploading of large data at the
administrator side, and security, as it immediately revokes ac-
cess permissions. We use formalization framework and system
implementation to demonstrate the security and efficiency of our
construction.

Index Terms—access control, cloud, revocation

I. INTRODUCTION

With the considerable advancements in cloud computing,
users and organizations are finding it increasingly appealing
to store and share data through cloud services. Cloud service
providers (such as Amazon, Microsoft, Apple, etc.) provide
abundant cloud based services, ranging from small-scale per-
sonal services to large-scale industrial services. However,
recent data breaches, such as releases of private photos [10],
have raised concerns regarding the privacy of cloud-managed
data. Actually, a cloud service provider is usually not secure
due to design drawbacks of software and system vulnerability
[2], [3]. As such, a critical issue is how to enforce data access
control on the potentially untrusted cloud.

In response to these security issues, numerous works [1],
[4]–[9] have been proposed to support access control on un-
trusted cloud services by leveraging cryptographic primitives.
Advanced cryptographic primitives are applied for enforc-
ing many access control paradigms. For example, attribute-
based encryption (ABE) [5] is a cryptographic counterpart of
attribute-based access control (ABAC) model [11]. However,
previous works mainly consider static scenarios in which

access control policies rarely change. The previous works
incur high overhead when access control policies need to be
changed in practice. At a first glance, the revocation of a user’s
permission can be done by revoking his access to the keys
with which the files are encrypted. This solution, however,
is not secure as the user can keep a local copy of the keys
before the revocation. To prevent such a problem, files have
to be re-encrypted with new keys. This requires the file owner
to download the file, re-encrypt the file, and upload it back
for the cloud to update the previous encrypted file, incurring
prohibitive communication overhead at the file owner side.

Currently, only a few works investigated the problem of
dynamic data access control. Garrison et al. [12] proposed two
revocation schemes. The first scheme requires an administrator
to re-encrypt file with new keys as discussed above. This
scheme incurs a considerable communication overhead. In-
stead, the second scheme delegates users to re-encrypt the file
when they need to modify the file, relieving the administrator
from re-encrypting file data by itself. This scheme, however,
comes with a security penalty as the revocation operation
is delayed to the next user’s modification to the file. As a
result, a newly revoked user can still access the file before
the next writing operation. Wang et al. [23] proposed another
revocation scheme, in which the symmetric homomorphic
encryption scheme [24] is used to encrypt the file. Such
a design enables the cloud to directly re-encrypt file with-
out decryption. However, this scheme incurs expensive file
read/write overhead as the encryption/decryption operation
involves comparable overhead with the public key encryption
schemes.

To overcome these problems, we present Crypt-DAC, a
cryptographically enforced dynamic access control system on
untrusted cloud. Crypt-DAC delegates the cloud to update
encrypted files in permission revocations. In Crypt-DAC, a
file is encrypted by a symmetric key list which records a
file key and a sequence of revocation keys. In a revocation,
the administrator uploads a new revocation key to the cloud,
which encrypts the file with a new layer of encryption and
updates the encrypted key list accordingly. Same as previous
works [12], [23], we assume a honest-but-curious cloud, i.e.,
the cloud is honest to perform the required commends (such as
re-encryption of files and properly update previous encrypted
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files) but is curious to passively gathering sensitive informa-
tion. Although the basic idea of layered encryption is simple,
it entails tremendous technical challenges. For instance, the
size of key list and encryption layers would increase as
the number of revocation operations, which incurs additional
decryption overhead for users to access files. To overcome
such a problem, Crypt-DAC proposes three key techniques as
follows.

First, Crypt-DAC proposes delegation-aware encryption s-
trategy to delegate the cloud to update policy data. For a file,
the administrator appends a new revocation key at the end of
its key list and requests the cloud to update this key list in the
policy data. The size of the key list however increases with the
revocation operations, and a user has to download and decrypt
a large key list in each file access. To overcome this problem,
we adopt the key rotation technique [15] to compactly encrypt
the key list in the policy data. As a result, the size of the key
list remains constant regardless of revocation operations.

Second, Crypt-DAC proposes adjustable onion encryption
strategy to delegate the cloud to update file data. For a
file, the administrator requests the cloud to encrypt the file
with a new layer of encryption. Similarly, the size of the
encryption layers increases with the revocation operations, and
a user has to decrypt multiple times in each file access. To
overcome this problem, we enable the administrator to define a
tolerable bound for the file. Once the size of encryption layers
reaches the bound, it can be made to not increase anymore by
delegating encryption operations to the cloud. As a result, the
administrator can flexibly adjust a tolerable bound for each
file (according to file type, access pattern, etc.) to achieve a
balance between efficiency and security.

During the life cycle of a file, its encryption layers contin-
uously increase until a pre-defined bound is reached. Crypt-
DAC proposes delayed de-onion encryption strategy to period-
ically refresh the symmetric key list of the file and remove the
bounded encryption layers over it through writing operations.
In specific, the next user to write to the file encrypts the writing
content by a new symmetric key list only containing a new
file key, and updates the key list in the policy data. With
this strategy, Crypt-DAC periodically removes the bounded
encryption layers of files while amortizing the burden to a
large number of writing users.

Altogether, Crypt-DAC achieves efficient revocation, effi-
cient file access and immediate revocation simultaneously. For
revocation efficiency, Crypt-DAC incurs lightweight commu-
nication overhead at the administrator side as it does not
need to download and re-upload file data. For immediate
revocation, the permissions of users are immediately revoked
as the files are re-encrypted. For file access efficiency, the files
are still encrypted by symmetric keys. We have implemented
Crypt-DAC as well as several recent works [12], [23] on
Alicloud. Real experiments suggest that Crypt-DAC is three
orders of magnitude more efficient in communication in access
revocation compared with the first scheme in [12], and is
nearly two orders of magnitude more efficient in computation
in file access compared with the scheme in [23]. Finally,
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Fig. 1. Cloud enabled data access control.

Crypt-DAC is able to immediately revoke access permissions
compared with the second scheme in [12].

The remainder of this paper is organized as follows. In
Section II, we introduce our system model and assumptions,
background on RBAC0 and the cryptographic techniques used
in our system design. Section III identifies several critical
issues for cryptographically enforced dynamic access control,
from which we derive the principles of Crypt-DAC. Section IV
describes the design details of Crypt-DAC. In Section V, we
formally analyze the security of Crypt-DAC. In Section VI, we
compare the performance of Crypt-DAC through experiments.
In Section VII, we discuss related works. Section VIII details
our conclusions.

II. BACKGROUND AND ASSUMPTIONS

In this section, we first define the system and threat models.
We then define the classes of cryptographic primitives upon
which Crypt-DAC is based.

A. System model

Our system model is depicted in Figure 1. We consid-
er a scenario where companies contract with a commercial
cloud provider (e.g., Alicloud, Microsoft Azure) to outsource
enterprise storage. There are three types of entities in our
system model: a cloud provider, an access control admin-
istrator, and a large number of users. The cloud provider
is responsible for the data storage and management. The
data includes file data of users in the company, as well as
policy data regulating access policies for these files. Both
the policy/file data are encrypted prior to being uploaded
to the cloud provider. The access control administrator is
responsible for managing access policies of the file data. It
assigns/revokes access permissions by creating, updating, and
distributing cryptographic keys used to encrypt files. Users
may download any policy/file data from the cloud, but are
only allowed to decrypt and read files according to their access
permissions. We do not consider data deduplication issue. IF
needed, secure data deduplication technique [14] can be used
here. We also assume that all parties communicate via pairwise
secure channels (e.g., SSL/TLS tunnels).

B. Threat model

In our threat model, we consider that the administrator is
honest. The users may try to access the file data out of their
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access permissions by compromising the cloud provider. Same
as previous works [12], [23], we assume a honest-but-curious
cloud provider. Honest means that the cloud provider honestly
follows the commands of the administrator/users such as re-
encryption of policy/file data and properly update previous pol-
icy/file data. Since any errors due to the provider’s misbehavior
will harm its reputation, we believe that the cloud provider has
incentive to follow the commands required by its customers.
However, the cloud provider may be curious to passively
gathering sensitive information to acquire commercial benefits
as it is hard to be detected.

We notice that the honest-but-curious assumption is crit-
ical to resist collusion between the cloud provider and re-
voked users. Generally, state of the art works fall in two
ways to revoke access privileges. The first is for a data
owner/administrator to download, re-encrypt, and upload the
policy/file data to the cloud provider (e.g. [12]). The second
is to delegate the cloud provider to directly re-encrypt the
policy/file data (e.g. [23]). In both cases, if a malicious cloud
provider does not properly update the previous policy/file data
and retains a copy of it before the re-encryption, then the
revoked users can continuously access the files. As policy/file
data is fully managed by the cloud provider, how to resist such
collusion attack without the honest-but-curious assumption is
still an open problem.

C. Security goals

We aim to provide confidentiality and access control for the
cloud-hosted file data.

Confidentiality: our system stores encrypted data on the
cloud, but never reveals the decryption keys to the cloud. This
protects the confidentiality of the file data.

Read access control: our system uses cryptography to
enforce access control so that users can only read file data
according to their access permissions.

Write access control: for writing permission enforcement,
our system relies on the cloud provider to validate write
privileges of users prior to file updates.

D. Role based access control

We design and analyze Crypt-DAC based on the role-
based access control model named (RBAC0) [13], which is
widely used in practical applications. RBAC0 model describes
permission management through the use of abstraction: roles
describe the access permissions associated with a particular
(class of) job function, users are assigned to the set of roles
entailed by their job responsibilities, and a user is granted
access to an object if they are assigned to a role that is
permitted to access that object. More formally, the state of
an RBAC0 model can be described as follows:

– U: a set of users
– R: a set of roles
– P: a set of permissions (e.g., (file, op))
– PA ⊆ R × P: a permission assignment relation
– UR ⊆ U × R: a user assignment relation

– auth(u, p) = ∃ r: [(u, r) ∈ UR] ∧ [(r, p) ∈ PA]: the
authorization predicate auth: U × P → B determines whether
user u has permission p

E. Cryptographic tools

Symmetric/Asymmetric cryptography: Our construction
makes use of symmetric-key encryption scheme (GenSym,
EncSym, DecSym), public-key encryption scheme (GenPub,
EncPub, DecPub) and digital signature scheme (GenSig, Sign,
Ver).

Key rotation scheme: Key rotation [15] is a scheme
(GenRo, B-Dri, F-Dri) in which a sequence of keys can be
produced from an initial key and a secret key. Only the owner
of the secret key can derive the next key in the sequence, but
any user knowing a key in the sequence can derive all previous
versions of the key. We next describe the algorithms of this
scheme:

GenRo(1n) → (rsk, rpk): On input a security parameter
1n, this algorithm outputs a secret-public key pair (rsk, rpk).

B-Dri(ki, rsk) → (ki+1): On input a key ki in a key
sequence (ki)ti=1 and a secret key rsk, this algorithm outputs
the next key ki+1 in the sequence.

F-Dri(ki, rpk) → ((kj)i−1j=1): On input a key ki in a key
sequence (ki)ti=1 and a public key rpk, this algorithm outputs
all previous versions of the key (kj)i−1j=1 in the sequence.

III. DESIGN PRINCIPLE

In this section, we begin with a basic construction of
cryptographic access control enforcement, from which we
derive a variety of issues for access revocation that must be
addressed. We then give an overview of our system, Crypt-
DAC, which addresses these issues.

A. Basic construction

In a cryptographically enforced RBAC0 system, a user u
is associated with a user read key (eku, dku) ← GenPub(1n)
and a user write key (sku, vku) ← GenSig(1n). A role r is
associated with a role key (ekr, dkr) ← GenPub(1n). A file is
associated with a file key k ← GenSym(1n).

Access enforcement: For each user u, the administrator
distributes a certificate for the user write key of u through
a user (U) tuple:

〈U, (u, vku), δSU 〉

This tuple contains a user name u, a verification key vku, and
a signature of the administrator δSU signed over (u, vku). For
each (u, r) ∈ UR in the RBAC0 state (i.e., there exists a user
u that is a member of r), the administrator distributes the role
key of r to u through a role key (RK) tuple:

〈RK, u, r, EncPubeku
(dkr)〉

This tuple provides u with cryptographically-enforced access
to the decryption key dkr of r. For each (r, (f, op)) ∈ PA in
the RBAC0 state (i.e., there exists a role r with permission to
f ), the administrator distributes the file key of f to r through
a file key (FK) tuple:
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〈FK, r, (fn, op), EncPubekr
(k)〉

This tuple provides r with cryptographically-enforced access
to the file key k for f. For each file f, the administrator
distributes f through a file (F) tuple:

〈F, fn, EncSymk (f )〉

This tuple contains a file name fn of f and a ciphertext of f.
File access: If a user u with authorization to read a file f

(i.e., ∃r: (u, r) ∈ UR ∧ (r, f, Read) ∈ PA) wishes to do so, u
downloads an RK tuple for the role r to decrypt the decryption
key dkr by dku. u also downloads an FK tuple for the file f to
decrypt the file key k by dkr. Finally, u downloads a F tuple
to decrypt the file f by k.

If a user u with authorization to write to a file f via
membership in role r (i.e., ∃r: (u, r) ∈ UR ∧ (r, f, RW) ∈ PA)
wishes to do so, u uploads a F tuple encrypting the new file
content f ’ as well as a signature δu over the F tuple signed by
the user write key of u. On the other hand, the cloud provider
checks (1) if there is an RK tuple assigning u as a member
of r and an FK tuple assigning r with permission RW to f ;
and (2) if there is a U tuple containing vku that verifies δu as
a valid signature over the F tuple. If both checks passed, the
cloud provider executes the writing operation.

Access revocation: The administrator may need to revoke
a permission of a role, or revoke a membership of a user. We
only describe the user revocation case as the role revocation
case is analogous. Removing a user u∗ from a role r entails:
(1) re-encrypting a new role key of r stored in RK tuples, (2)
re-encrypting new file keys stored in FK tuples accessible by
r, and (3) re-encrypting files stored in F tuples by the new file
keys. All these steps must be carried out by an administrator
as only the administrator can modify the access authorization.

In the first step, a new role key of r is generated. This key
is then encrypted into a new RK tuple for each remaining
member u of r to replace the old RK tuple. This step prevents
u∗ from accessing the new role key of r. In the second step, a
new file key is generated for each file f accessible by r. This
key is then encrypted into a new FK tuple for each role r’
(including r) that has access to f, and the new FK tuple is
uploaded to replace the old FK tuple. This step prevents u∗

from accessing the new file keys. In the third step, each file to
which r has access is re-encrypted into a new F tuple by the
new file key. The new F tuple is then uploaded to replace the
old F tuple. This step prevents u∗ from accessing the files by
using cached old file keys. An illustrative example is shown
in Figure 2.

We emphasize that it is important to re-encrypt the files
by the new file keys as u∗ may cache the old file keys of
these files and try to access them after the revocation. For
example, suppose u∗ is assigned to three roles and can access
200 files. u∗ can first access all of these files to cache their
file keys when he join the system. Later, u∗ is revoked from
one of its three roles and cannot access some of the 200 files
anymore. However, u∗ can still use the cached file keys to
access these files if they are not re-encrypted by new file keys

u RK tuple 

RK tuple 

f
FK tuple 

F tuple 

r FK tuple 

r

u*

Fig. 2. An illustrative example of removing a user u∗ from a role r. The black
arrows present the access relationships among users, roles and files before the
revocation, and the red rectangles include the RK, FK, and F tuples that need
to be re-generated in the revocation. In the first step, a new role key of r is
generated. This key is then encrypted into a new RK tuple for u, which is a
remaining member of r. In the second step, a new file key is generated for f,
which is accessible by r. This key is then encrypted into two new FK tuples
for r’ and r respectively that both have access to f. In the third step, f is
re-encrypted into a new F tuple by the new file key.

in the revocation.

B. Design issues for revocation

The revocation in this basic construction is not suitable for
realistic dynamic access control scenario due to its prohibitive
overhead in file data re-encryption. Due to the multi-to-
one property of access permission relations among users,
roles, and files in RBAC0 model, the administrator needs to
download, decrypt, re-encrypt, and upload a large number of
F tuples, incurring potentially high bandwidth consumptions.
For example, suppose the administrator needs to revoke the
membership of u∗ from r and r has permission to 100 files.
Then, the administrator needs to re-encrypt all of the 100 files
in the revocation.

Previous designs: In response, Garrison et al. [12] pro-
posed two revocation schemes. The first scheme requires the
administrator to re-encrypt file data by itself in a revocation.
This scheme completes the revocation immediately with a
potentially high communication overhead. Differently, the
second scheme relies on next users writing to the F tuples
to re-encrypt the F tuples. This scheme, however, comes with
security penalty as it delays the revocation to the next writing,
creating a vulnerability window in which revoked users can
continuously access the F tuples which they have accessed
previously and cached the file keys.

To alleviate the overhead of file data re-encryption, Wang
et al. [23] proposed another revocation scheme, in which the
symmetric homomorphic encryption scheme [24] is used to
encrypt the file data. Instead by re-encrypting the file data by
itself, the scheme enables the administrator to delegate the
cloud to update F tuples from old file keys to new file keys
without decryption. The problem, however, is that the cost of
homomorphic symmetric encryption is comparable with public
key encryption schemes, incurring prohibitive computation
overhead during file reading/writing.

C. Our design

To overcome these limitations, Crypt-DAC develops new
techniques using lightweight symmetric encryption scheme.
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Fig. 3. An illustrative example of encryption evolution of a F tuple. The F
tuple is encrypted by a symmetric key list (k0, k1, k2, k3) which records a
file key k0 and a sequence of revocation keys k1, k2, k3. In the ith revocation
(i ∈ (1, 2, 3)), the administrator uploads a new revocation key ki to the cloud,
which encrypts the file with a new layer of encryption.

In Crypt-DAC, a F tuple (file) is encrypted by a symmetric
key list (k0, k1,..., kt) which records a file key k0 and a
sequence of revocation keys k1,..., kt. Crypt-DAC uses the
innermost encryption layer to protect the file against the cloud
provider and the outermost encryption layer to protect the file
against revoked users. In the ith revocation, the administrator
uploads a new revocation key ki to the cloud, which encrypts
the file with a new layer of encryption. After this procedure,
the revoked user cannot access the file as he cannot access ki.
An illustrative example is shown in Figure 3.

Compared with previous designs, Crypt-DAC achieves effi-
cient revocation, immediate revocation, and efficient file access
simultaneously. For revocation efficiency, Crypt-DAC incurs
lightweight communication overhead at the administrator side
as it does not need to download and re-upload file data but only
needs to upload keys to the cloud. For immediate revocation,
the permissions of users are immediately revoked as the files
are re-encrypted. For file access efficiency, the files are still
encrypted by symmetric keys. To further avoid users to decrypt
multiple encryption layers in file access operations, Crypt-
DAC proposes three key techniques to constrain the size of
key list and encryption layers for files as follows.

1) Delegation-aware encryption: Delegation-aware encryp-
tion enables the administrator to delegate the cloud provider
to update RK and FK tuples instead of creating and uploading
new RK and FK tuples by itself. To constrain the size of the
key lists, delegation-aware encryption adopts the key rotation
technique [15] to compactly encrypt each key list in one
encryption in a FK tuple. As a result, the administrator only
needs to upload one encryption for the cloud to update a key
list. This design also improves file access efficiency as users
only need to download and decrypt compact FK tuples to
access files.

To revoke a user u∗ from a role r, Crypt-DAC uses the
delegation-aware encryption strategy to update the involved
RK and FK tuples as shown in Figure 4. The administrator
generates a new role key (ek∗r , dk∗r ) of r. The administrator
first delegates the cloud provider to update RK tuples. Suppose
there are n users remaining in r. For each of these users u, the
administrator delegates the cloud provider to update the RK
tuple of u. To do so, the administrator uploads an encryption
of EncPubeku

(dk∗r ). With this encryption, the cloud updates the

Cloud

dkr eku

Cloud

For each of the n users u:

RK
u, r

dkr eku

RK
u, r

dkr eku

For each of the m files fn:

FK
r , ( fn, op )
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Fig. 4. To revoke a user u∗ from a role r, the delegation-aware encryption
strategy updates the involved RK and FK tuples in two steps. The administra-
tor first delegates the cloud provider to update RK tuples. Suppose there are
n users remaining in r. For each of the n users u, the administrator uploads
an encryption of a new role key to the cloud provider for it to update the
RK tuple of u. The administrator next delegates the cloud provider to update
FK tuples. Assume that there are m files to which r has permissions, and n
roles with permissions to each of the m files. For each of the m×n roles r’,
the administrator uploads an encryption of a new revocation key to the cloud
provider for it to update the FK tuple of r’.

RK tuple as:

〈RK, u, r, EncPubeku
(dk∗r )〉

The updated RK tuple encrypts the new role key of r.
The administrator next delegates the cloud provider to

update FK tuples. An FK tuple contains an encryption of a
symmetric key list (k0, k1,..., kt) for a file fn. With the key
rotation scheme, the administrator can use a key rotation key
pair (rskfn , rpkfn ) to generate the revocation key sequence,
and compactly represent this key list as (k0, kt). Given (k0,
kt), the next revocation key kt+1 can be derived by kt+1 ←
B-Dri(kt, rskfn ) and the whole revocation key sequence k1,...,
kt can be recovered by ki−1 ← F-Dri(ki, rpkfn ) (2≤i≤t). As
a result, the complete format of an FK tuple is:

〈FK, r, (fn, op), c〉

c = EncPubekr
(k0, kt, rpkfn , t)

Assume that there are m files to which r has permissions. For
simplicity, we assume that there are n roles with permissions to
each of the m files. For each of the m files fn, the administrator
generates a new revocation key kt+1 ← B-Dri(kt, rskfn ). For
each of the n roles r’ with permissions to fn, the administrator
uses the role key of it to encrypt (k0, kt+1, rpkfn , t + 1)
and uploads the encryption to the cloud. Upon receiving the
encryptions, the cloud provider updates the key lists in the FK
tuples of the n roles as:

〈FK, r’, (fn, op), c〉

If r’ = r: c = EncPubek∗r
(k0, kt+1, rpkfn , t+ 1)

If r’ 6= r: c = EncPubekr′
(k0, kt+1, rpkfn , t+ 1)
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Fig. 5. To complete the revocation of the user u∗ from the role r, the ad-
justable onion encryption strategy provides a security mode and an efficiency
mode to update the involved F tuples. In the security mode, the encryption
layers of an F tuple increase as the revocations increase. For each of the m
files fn to which r has permissions, the administrator uploads a revocation
key to the cloud provider for it to directly encrypt the F tuple of fn. In the
efficiency mode, the encryption layers of an F tuple are constant regardless
of the revocations. For each of the m files fn to which r has permissions, the
administrator uploads two revocation keys to the cloud provider for it to first
decrypt and then encrypt the F tuple of fn.

After the updating, the new FK tuples compactly encrypt the
new symmetric key list (k0, k1,..., kt+1).

2) Adjustable onion encryption: Adjustable onion encryp-
tion enables the administrator to delegate the cloud provider
to update F tuples. The administrator only needs to upload
a new revocation key to the cloud provider. Upon receiving
the key, the cloud provider uses it to encrypt the files with
a new layer of encryption and then deletes it. To constrain
the size of the encryption layers, adjustable onion encryption
provides two modes: security mode and efficiency mode. Such
a design enables the administrator to define a tolerable bound
for a file. Initially, the strategy works in the security mode and
the encryption layers increase as revocations happen. Once the
size of the encryption layers reaches the bound, it turns to the
efficiency mode to constrain the encryption layers by putting
more trust on the cloud. As a result, the administrator can
flexibly adjust a tolerable bound for each file according to
file type, access pattern, etc., to achieve a balance between
efficiency and security.

To complete the revocation of the user u∗ from the role
r, Crypt-DAC uses the adjustable onion encryption strategy to
update the involved F tuples as shown in Figure 5. The strategy
provides two modes: security mode and efficiency mode to do
so as follows.

Security mode: In this mode, a file fn is encrypted in a F
tuple by a symmetric key list (k0, k1,..., kt) as follows:

〈F, fn, c〉

c = EncSymkt (...EncSymk1 (EncSymk0 (f )))

When a user u accesses fn, u decrypts (k0, kt, rpkfn , t) from
one of these FK tuples, recovers the revocation key sequence:

Cloud

F 
fn

F

c EncSym  (f')
fn

For the F tuple of fn:

1

F

EncSym  (f')
fn

k'0

k'0

Cloud

For each of the m roles r:

FK
r, (fn, op)

FK

c EncPub (k'0)
n

EncPub (k'0)

2

r, (fn, op)
ekr

ekr

user u

administrator

Fig. 6. The delayed de-onion encryption strategy periodically refreshes the
symmetric key list of files and removes the encryption layers of F tuples
through file writing operations. With the strategy, a user u writes to a file fn
in two steps. u first updates the F tuple of fn. To do so, u generates a F tuple
to encrypt fn with a new key list containing a single key, and uploads the
F tuple to the cloud provider for it to replace the current F tuple of fn. u
next delegates the administrator to update the key list of fn. Assuming that
there are m roles having permissions to fn. For each of the m roles r, the
administrator uploads an encryption of the new key list for the cloud provider
to update the FK tuple of r.

ki−1←F-Dri(ki, rpkfn ) (2≤i≤t), and uses (k0, k1,..., kt) to
decrypt the F tuple.

To complete the revocation, for each of the m files fn
to which r has permissions, the administrator derives a new
revocation key kt+1 ← B-Dri(kt, rskfn ) and uploads kt+1

to the cloud provider. Upon receiving it, the cloud provider
updates the F tuples of the m files as:

〈F, fn, EncSymkt+1 (c)〉

Efficiency mode: In this mode, a file fn in a F tuple is
encrypted by a symmetric key list (k0, k1,..., kt) as follows:

〈F, fn, c〉

c = EncSymkt (EncSymk0 (f ))

When a user u accesses fn, u decrypts (k0, kt, rpkfn , t) from
one of these FK tuples and uses (k0, kt) to decrypt the F
tuple.

To complete the revocation, for each of the m files fn
to which r has permissions, the administrator derives a new
revocation key kt+1← B-Dri(kt, rskfn ) and uploads (kt, kt+1)
to the cloud provider. Upon receiving it, the cloud provider
updates the F tuples of the m files as:

〈F, fn, EncSymkt+1 (DecSymkt (c))〉

Comparing with the security mode, the efficiency mode en-
crypts an F tuple with two layers instead of t layers, enabling
more efficient file access. The security tradeoff, however, is
that the efficiency mode puts more trust on the cloud as
it requires the cloud to correctly execute more operations
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(first decrypt and then encrypt) to update F tuples in each
revocation.

Adjustable bound: The combination of the above two
modes enables the administrator to define a bound T of
tolerable encryption layers for a file. T means that when a file
is encrypted by less than T encryption layers, the file access
efficiency is tolerable. In this case, the administrator prefers to
minimize the trust on the cloud and uses the security mode in
revocations. Once the file is encrypted by T encryption layers,
the administrator prefers file access efficiency and turns to use
the efficiency mode in revocations by putting more trust on the
cloud.

Considering a sequence of revocations happened in the life
cycle of an F tuple. In the ith revocation, if i ≤ T, the
administrator uses the security mode to update the F tuple. To
access the F tuple in this case, a user recovers a symmetric
key list (k0, k1,..., ki) from an FK tuple to decrypt the F tuple.
Otherwise, the administrator turns to use the efficiency mode
to update the F tuple. To access the F tuple in this case, a
user recovers a symmetric key list (k0, k1,..., kT−1, ki) from
an FK tuple to decrypt the F tuple.

3) Delayed de-onion encryption: During the life cycle of a
file, its encryption layers continuously increase until a pre-
defined bound is reached. To further improve file access
efficiency, Crypt-DAC periodically refreshes the symmetric
key list of the file and removes the bounded encryption layers.
A direct solution is for the administrator to periodically re-
encrypts the F tuple with a new key list which only contains
a new file key. This solution however, incurs large commu-
nication and computation overhead at the administrator side.
Instead, Crypt-DAC proposes delayed de-onion encryption
strategy to do so through writing operations. In specific, a
user writing to an F tuple encrypts the writing content by a
new symmetric key list, and updates the symmetric key list
accordingly. In this way, Crypt-DAC amortizes the updating
burden to a large number of writing users.

The work flow of the delayed de-onion encryption strategy
is shown in Figure 6. Suppose a user u wants to write to
a file fn. To do so, u first updates the F tuple of fn. u
generates a new file key k′0 ← GenSym(1n) and creates a
F tuple encrypting the writing content f ’ by a new symmetric
key list (k′0):

〈F, fn, EncSymk′0 (f ’)〉

u uploads the F tuple to the cloud provider for it to replace
the existing F tuple.

u next updates the key list of fn. To alleviate the overhead,
u delegates the administrator to do so. Assume that there are
m roles having permissions to fn. u uploads the new key list
(k′0) to the administrator and delegates it to update the key
list in the FK tuples of the m roles. For each of the m roles
r, the administrator encrypts k′0 by the encryption key ekr of
r, and uploads the encryption for the cloud provider to update
the FK tuple of r as:

〈FK, r, (fn, op), EncPubekr
(k′0)〉

After the writing operation, the symmetric key list is refreshed
and the multiple encryption layers over the F tuple is removed.

IV. DESIGN DETAILS

In Crypt-DAC, users add files to the cloud provider by
creating F tuples. The administrator assigns file permissions
to roles by distributing file keys using FK tuples, and assigns
users to roles by distributing role keys to users using RK
tuples. We next describe the various operations in Crypt-DAC.
There are three types of operations in Crypt-DAC: permission
revocation, permission assignment, and file operation. Our
design uses the following notation: u is a user, r is a role, p is a
permission, fn is a file name of a file f, c is a ciphertext (either
symmetric or public encryption), and v is a version number.
SU is the superuser identity owned by the administrator. We
use – to represent a wildcard.

A. File management

We use three types of files to store metadata for file
management. We introduce them as follows.

USERS: We use a file named USERS to store records for
all the users. A record (u, eku) contains a user identity u and
the encryption key eku of u.

ROLES: We use a file named ROLES to store records for
all the roles, which is publicly viewable and can only be
changed by the administrator. A record (r, ekvr ) contains a
role identity r and the encryption key ekvr of r.

FILES: We use a file named FILES to store records for all
the files, which is publicly viewable and can only be changed
by the cloud provider. A record (fn) contains the file name
fn of a file.

B. Key management

In our system, the administrator, roles and users are associ-
ated with cryptographic keys. We introduce them as follows.

Administrator keys: The administrator plays a role of
super user in the system. It has an encryption key pair (ekSU ,
dkSU ) of a public key encryption scheme and a signature
key pair (skSU , vkSU ) of a digital signature scheme. The
encryption key pair is used by the administrator to create a
special RK tuple when adding a new role into the system.
The RK tuple means that the administrator is a super user
who can access the keys of the role. With this RK tuple, the
administrator can assign a user to the role by distributing the
role keys using another RK tuple. The encryption key pair
is also used by a user to create a special FK tuple when
adding a new file into the system. The FK tuple means that the
administrator is a super user who can access the symmetric
key list of the file. With this FK tuple, the administrator can
assign a permission to a role by distributing the symmetric key
list using another FK tuple. On the other hand, the signature
key pair is used to assign U tuples to users.

User keys: A user read key of u is an encryption key pair
(eku, dku) of a public key encryption scheme. This key is
used to encrypt/decrypt RK tuples for u. A user write key of u
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Algorithm 1 revokeUser(u)
1: For each role r that u is assigned to:
2: REVOKEU(u, r);
3: Req C.P. to delete 〈U, (u, vku), δSU 〉;
4:
5: procedure REVOKEU(u, r)
6: DAE-RK(r);
7: DAE-FK(r);
8: For each fn with 〈FK, r, (fn, op), c〉:
9: ONION-ENCRYPTION(fn);

10:
11: procedure DAE-RK(r)
12: Generate a new role key (ekr , dkr) for r;
13: For each 〈RK, u’, r, c〉 with u’ 6= u:
14: Admin:
15: Send EncPub

ek
u′

(dkr) to C.P.;
16: C.P.:
17: Update 〈RK, u’, r, c〉 as 〈RK, u’, r, EncPub

ek
u′

(dkr)〉;
18:
19: procedure DAE-FK(r)
20: For each fn with 〈FK, r, (fn, op), c〉:
21: Admin:
22: Generate a new revocation key kt+1 ← D-Dri(kt, rskfn );
23: For each role r’ with permission to fn:
24: Compute c′ = EncPub

ek
r′

(k0, kt+1, rpkfn , t+ 1);
25: Send c′ to C.P.;
26: C.P.:
27: For each role r’ with permission to fn:
28: Update 〈FK, r’, (fn, op), c〉 as 〈FK, r’, (fn, op), c’〉;
29:
30: procedure ONION-ENC(fn)
31: Admin:
32: Compute k̂t+1 ← hash(kt+1, t+1);
33: Send (k̂t+1/k̂t+1, k̂t) to C.P.;
34: C.P.: 〈F, fn, c〉:
35: Compute c ← EncSym

k̂t+1 (c)/c ← EncSym

k̂t+1 (DecSym

k̂t (c));

is a digital signature key pair (eku, dku) of a digital signature
scheme. This key is used to sign/verify F tuples written by u.

Role keys: A role key of r is an encryption key pair (ekr,
dkr) of a public key encryption scheme. This key pair is used
to encrypt/decrypt FK tuples for r.

File keys: A file key of fn is a symmetric key list (k0, k1,...
kt) of a symmetric key encryption scheme and a rotation key
pair (rskfn , rpkfn ) of a key rotation scheme. (k0, k1,... kt) is
used by users to encrypt the F tuple of fn, and (rskfn , rpkfn )
is used by the administrator to compactly store (k0, k1,... kt)
in the FK tuple of fn.

C. Operations

Permission revocation: Permission revocation includes re-
voking the permission of a user revokeUser(u) (as described
in Algorithm 1) and revoking the permission of a role
revokeRole(r) (as described in Algorithm 2).

The administrator uses revokeUser(u) to revoke the permis-
sion of a user u from all of its assigned roles. The algorithm
invokes DAE-RK(r) and DAE-FK(r), which implements the
delegation-aware encryption strategy, to update the involved
RK and FK tuples respectively. The algorithm also invokes
ONION-ENC(fn), which implements the adjustable onion
encryption strategy, to update the involved F tuples. Also, the
administrator can directly use REVOKEU(u, r) to revoke the
membership of u from a certain role r.

The administrator uses revokeRole(r) to revoke the per-
mission of a role r from all of its assigned files. The al-
gorithm invokes VDAE-FK(r), which partly implements the

Algorithm 2 revokeRole(r)
1: Remove (r, ekr) from ROLES;
2: For each permission p = 〈fn, op〉 that r has access to:
3: REVOKEP(r, 〈fn, Read〉);
4:
5: procedure REVOKEP(r, 〈fn, RW〉)
6: Admin:
7: Send 〈FK, r, (fn, Read), c〉 to C.P.;
8: C.P.:
9: Update 〈FK, r, (fn, RW), c〉 as 〈FK, r, (fn, Read), c〉;

10:
11: procedure REVOKEP(r, 〈fn, Read〉)
12: Req C.P. to delete all 〈RK, –, r, – 〉;
13: Req C.P. to delete 〈FK, r, (fn, –), –〉;
14: VDAE-FK(fn);
15: ONION-ENCRYPTION(fn);
16:
17: procedure VDAE-FK(fn)
18: Admin:
19: Generate a new revocation key kt+1 ← D-Dri(kt, rskfn );
20: For each role r’ 6= r with permission to fn:
21: Compute c′ = EncPub

ek′r
(k0, kt+1, rpkfn , t+ 1);

22: Send c′ to C.P.;
23: C.P.:
24: For each role r’ 6= r with permission to fn:
25: Update 〈FK, r’, (fn, op), c〉 as 〈FK, r’, (fn, op), c’〉;

delegation-aware encryption strategy, to update the involved
FK tuples. The algorithm also invokes ONION-ENC(fn) to
update the involved F tuples. revokeRole(r) can be slightly
modified to revoke the permission of r from a single file fn.
There are two cases. First, the administrator can directly use
REVOKEP(r, 〈fn, RW〉) to revoke a permission of r from 〈fn,
RW〉 to 〈fn, Read〉. Second, the administrator can directly use
REVOKEP(r, 〈fn, Read〉) to totally revoke a permission 〈fn,
op〉 of r.

Permission assignment: Permission assignment includes
adding a new user addUser(u), adding a new role addRole(r),
assigning a user to a role assignU(u, r), and assigning a role
to a file with Read/RW permission assignP(r, 〈fn, op〉). Due to
the space constraint, we omit the algorithm details of these
operations. A user u uses addUser(u) to join the system. The
administrator uses addRole(r) to add a new role r into the
system, uses assignU(u, r) to assign a user u with a role r,
and uses assignP(r, 〈fn, op〉) to assign a role to a file with
Read/RW permission.

File operation: File operation includes file creation
addFile(fn, f, u), file read read(fn, u) (as described in Algorithm
3), and file write write(fn, u) (as described in Algorithm 4). A
user u uses addFile(fn, f, u) to create a new file fn in the system
and uses read(fn, u) to read a file fn from the cloud provider.
Also, a user u uses write(fn, u) to write to a file fn stored
in the cloud provider. This algorithm invokes DELAYED DE-
ONION(〈RK, u, r, c〉), which implements the delayed de-onion
encryption strategy, to refresh the symmetric key list of fn.
We noticed that in some cases, u does not need to execute the
delayed de-onion encryption strategy as no revocation happens
subject to fn.

D. Data integrity

Many works [16]–[19] have been done to ensure data
integrity in untrusted cloud. Lighten by these works, we show
how to extend Crypt-DAC to ensure data integrity when a
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Algorithm 3 read(fn, u)
1: User u:
2: Send (u, r, fn) to C.P.;
3: C.P.:
4: If there exists an RK tuple 〈RK, u, r, c〉 ∧
5: a FK tuple 〈FK, r, (fn, op), c’〉 ∧
6: a F tuple 〈F, fn, c”〉:
7: Then
8: Return the RK tuple, FK tuple, and F tuple to u;
9: Else

10: Return ⊥ to u;
11: User u:
12: Compute dkr ← DecPub

dku
(c);

13: Compute (k0, kt, rpkfn , t) ← DecPub
dkr

(c’);
14: For i = t & i > 1 & i−−:
15: Compute ki−1 ← F-Drirpkfn

(ki);
16: Compute k̂t = hash(kt, t);
17: Compute c” ← DecSym

k̂t
(c”);

18: For i = T & i ≥ 0 & i−−:
19: Compute k̂i = hash(ki, i);
20: Compute c” ← DecSym

k̂i
(c”);

21: Output c”;

Algorithm 4 write(fn, u)
1: User u:
2: Send (fn, write request) to C.P.;
3: C.P.:
4: Include all the FK tuples containing fn into FK-set;
5: Return 〈RK, u, r, c〉 to u;
6: User u:
7: DELAYED DE-ONION(〈RK, u, r, c〉);
8:
9: procedure DELAYED DE-ONION(〈RK, u, r, c〉)

10: User u:
11: Compute k′0 ← GenSym();
12: Compute c’ ← EncSym

k′0
(f ’);

13: Compute δu ← Signsku (F, fn, c’);
14: Send 〈F, fn, c’, δu〉 to C.P.;
15: Send (k′0, fn) to Admin;
16: Admin:
17: For each role r’ with permission to fn:
18: Compute c” ← EncPub

pkr
(k′0, rpkfn , 0);

19: Insert c” into C-set;
20: Send C-set to C.P.;
21: C.P.:
22: If there exists a U tuple 〈U, (u, vku), δSU 〉|valid← Vervku (F, fn, c’) ∧
23: an RK tuple 〈RK, u, r, c〉 ∧ a FK tuple 〈FK, r, (fn, RW), c’〉:
24: Then Write 〈F, fn, c’〉;
25: For each 〈FK, r’, (fn, RW), c’〉 ∈ FK-set and a proper c” ∈ C-set:
26: Update 〈FK, r’, (fn, RW), c’〉 to 〈FK, r’, (fn, RW), c”〉;
27: Else
28: Return ⊥ to u;

stronger threat model is needed. The two schemes in [12]
can achieve data integrity by using signature scheme to sign
RK, FK, and F tuples. As these tuples are updated at the
administrator/user side, the administrator/user can generate
new signatures over the updated tuples before uploading to the
cloud provider. On the other hand, Crypt-DAC and the scheme
in [23] cannot to do so by directly using signature scheme. As
the administrator delegates the cloud provider to update RK,
FK, and F tuples, the cloud provider cannot generate new
signatures over the updated tuples since it does not have the
signing key.

Instead, we propose to use sanitizable signature scheme
[39] to ensure data integrity. Sanitizable signature scheme is
a special signature scheme in which a signer can delegate a
proxy to modify a certain portion of a signed message without
invalidating the attached signature. For RK and FK tuples, the
administrator uses sanitizable signature scheme to sign them

and delegates the cloud provider to modify the encryption
portion of them. In this way, the cloud provider can directly
update the RK and FK tuples without invalidating the attached
signatures. Differently for F tuples, the administrator uses
general signature scheme to sign them. The reason is that
in a revocation, the administrator only delegates the cloud
provider to update the encryption portion of F tuples by
adding a new encryption layer over it. This operation does not
change the encrypted file contents, and thus does not invalidate
the attached signatures. As a result, we do not need to use
sanitizable signature scheme to sign F tuples.

With our extension, a malicious cloud provider cannot
arbitrarily modify RK, FK, and F tuples or generate fake
tuples. Also, maliciously modifying the encryption portion of
RK and FK tuples can be easily detected by users.

V. SECURITY ANALYSIS

We analyze the security of Crypt-DAC using the access con-
trol expressiveness framework known as application-sensitive
access control evaluation (ACE) [36]. ACE is a formalized
mathematical framework to evaluate how well a candidate
access control scheme implement an idealized access control
scheme. We show that Crypt-DAC is correct and secure
under ACE. In specific, we prove that Crypt-DAC satisfies
three properties defined in ACE: correctness, safety and AC-
preservation. Please refer to [40] to find the full proof details.

At a high level, correctness and safety ensures that an exe-
cution environment cannot determine whether it is interacting
with the idealized RBAC0 scheme or with Crypt-DAC through
inputs, outputs and intermediate states. The two properties
ensure that Crypt-DAC is correct. AC-preservation ensures that
a permission in the idealized RBAC0 scheme is authorized
if and only if its mapping in Crypt-DAC is authorized. This
property ensures that Crypt-DAC is secure. We summarize our
result in theorem 1.

Theorem 1: Crypt-DAC implements RBAC0 with correct-
ness, AC-preservation, and safety.

In our proof, we first formalize Crypt-DAC under the
ACE framework. We then provide a formal mapping from
Crypt-DAC to RBAC0. We show that this mapping achieves
correctness, AC-preservation, and safety. The full proof of
Theorem 1 can be found in Appendix.

As Crypt-DAC inherits the design of [12], our proof is
also similar with the proof of [12]. The difference is our
formalization of the query auth(u, p), which asks whether
a user u has a permission p=(fn, op). We formalize auth(u,
(fn, Read)) in a candidate access control system as whether
u can decrypt the F tuple 〈F, fn, c〉. This formalization
includes the fact that in a revocation, if the involved F tuples
are not timely re-keyed and re-encrypted, the revoked users
can still access the files encrypted in the F tuples. With this
formalization, the second scheme in [12] has to use revokeUser
and write to implement a revocation operation in RBAC0

to achieve correctness. This implementation, however, breaks
safety. In specific, to execute a revocation operation in RBAC0,
the scheme sequentially executes revokeUser and write. The
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Fig. 7. Summary of simulation results.

execution of revokeUser generates an intermediate state, in
which a query auth(u, (fn, Read)) is TRUE for a revoked
user u and a file fn involved in the revocation. This query,
however, is FALSE in the end state of RBAC0 generated by
the execution of revocation.

VI. SYSTEM EVALUATION

To simplify the presentation, we term the two revocation
schemes proposed in [12] as immediate re-encryption (IMre)
and deferred re-encryption (DEre), respectively. We also term
the revocation scheme proposed in [23] as homomorphic re-
encryption (HOre). We implement IMre, DEre, HOre, and
Crypt-DAC. In our implementation, we deploy the adminis-
trator on a PC which is equipped with a 4-core Intel Xeon
2.0 GHz processor and 16 GB RAM in our lab, and the
cloud provider on AliCloud. We compare the performance of
the four systems in access revocation and file reading/writing.
We implement the cryptographic schemes based on Crypto++
[37]. We select the AES scheme and the El Gamal scheme to
instantiate the symmetric and public key encryption schemes
respectively. Both the schemes are set with a security parame-
ter of 80 bits. To evaluate the performance of the four systems
in a realistic access control scenario, we derive several critical
access control parameters through a simulation of data access
control. We use the same simulation framework [38] over the
same real-world RBAC data sets as in [12] to generate traces of
access control actions, and extract the parameters from these
traces.

A. Access trace simulation

The simulation framework proposed in [38] describes a
range of realistic access control scenarios and allows us to
investigate various access control actions and cryptographic
operations incurred by these actions. We initialize the sim-
ulation from start states extracted from real-world data sets
enforced by role based access controls. We then generate traces
of access control actions using actor-specific continuous-time
Markov chains. From these traces, we can record the number
of instances of each cryptographic operation executed, includ-
ing counts or averages. We simulate one-month periods in
which the administrator of the system behaves.

We show our simulation results in Figure 7. In Fig 7(a),
we show the number of files that need to be re-encrypted for

a single user revocation. In many scenarios, a user revocation
triggers the re-encryptions of tens or hundreds of files, such as
in emea or firewall2. From this result, we extract the following
access control parameter: to revoke a user, the total number
of involved F tuples that need to be re-encrypted in average
falls in [0, 200].

Fig 7(b) shows the upper bound a file needs to be re-
encrypted within a month for the purpose of user revocation.
In Crypt-DAC, this bounds the increased number of encryption
layers of a file within a month. From this result, we extract
the following access control parameter: for file data, the
encryption layers of each file in average increases less than
3 within a month.

B. End to end experiments

Crypt-DAC only uses lightweight symmetric encryptions to
encrypt file data and develops three new strategies to constrain
the size of key list and encryption layers for files.

For access revocation, Crypt-DAC uses delegation-aware
encryption strategy to delegate the cloud provider to update
RK/FK tuples. As key lists are compactly stored in FK tuples,
the administrator costs the same overhead to update RK/FK
tuples as previous works. Crypt-DAC also uses adjustable
onion encryption strategy to delegate the cloud to update F
tuples. As the administrator only sends symmetric keys for
the cloud provider to encrypt files, it costs far less overhead
to update F tuples than previous works.

For file read/write, Crypt-DAC constrains encryption layers
over files to improve the efficiency of file read/write op-
erations. In specific, Crypt-DAC uses the adjustable onion
encryption strategy to constrain the encryption layers in re-
vocation operations and delayed re-onion encryption strategy
to remove them periodically. The combination of the two
strategies ensure that the encryption layer of each file is
under an upper bound all the time. More interestingly, the
administrator can adjust this upper bound to suit specific
application requirements by combining the two strategies in
a flexible way.

We show such a way as follows. Suppose each file needs
to be re-encrypted at most l times within every fixed-sized
period for the purpose of user revocation (3 times within
every month in our trace simulation). By combining the two
strategies, the administrator can adjust an upper bound l×k
of encryption layers over files. Given the delayed re-onion
encryption strategy, the administrator sets a parameter α such
that α fraction of files will be written at least once within every
k periods. For these files, the administrator uses the security
mode of the adjustable onion encryption strategy to update
them in revocation operations. For the remainder 1-α files,
the administrator uses the security mode to update them and
turn to the efficiency mode once their encryption layers reach l
× k in revocation operations. In this way, the encryption layer
of each file is bounded by l×k all the time. As α and k has
a positive relationship, the administrator can adjust the upper
bound l×k by adjusting the parameter α.
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Fig. 9. Computation overhead of Crypt-DAC and HOre at cloud side in
revocation.

Revocation: We evaluate the performance of IMre, HOre,
Crypt-DAC and DEre in revoking a user u from a role r. This
experiment is affected by two parameters: file size and number
of F tuples that need to be re-encrypted. We consider three
sizes of a file: 10 M, 50 M and 100 M. We use the access
control parameter that the number of F tuples that need to be
re-encrypted falls in [0, 200] and show the experiment results
in Figure 8.

In Figure 8(a-c), we observe that the time cost of IMre
at the administrator side is prohibitive and increases fast as
the file size and the number of F tuples increases. When
processing 200 F tuples with 100 M file size, IMre takes about
1129 minutes. On the other hand, HOre and Crypt-DAC costs
about 50 seconds under the same parameters, achieving 1356
times improvement. Also, we observe that the time cost of
HOre and Crypt-DAC is not affected by the file size. The
reason is that the administrator only needs to generate and
send cryptographic keys for F tuples regardless of their file
size. Finally, the performance of DEre is similar with HOre
and Crypt-DAC and is not affected by the file size. The reason
is that DEre delayed the re-encryption of the F tuples to the
next users writing to them.

Additionally, in Figure 9, we observe that the time cost of
HOre at the cloud side is prohibitive and increases with the file
size. The reason is that the cloud needs to homomorphically
re-encrypt each F tuple, while in Crypt-DAC, the cloud only
needs to AES-encrypt each F tuple. The time cost of HOre is
520 times higher than Crypt-DAC for a cloud to process a file

0

20

40

60

80

100

120

140

160

180

10M 50M 100M 10M 50M 100M 10M 50M 100M

IMre/DEre Add cost of Crypt-DACseconds

k = 1 k = 3 k = 5 

(a) Performance of IMre/DEre and
Crypt-DAC at user side

10M 50M 100M
1 0.486133 0.526553 0.508783
2 1.901134 1.986156 1.958214
3 3.352962 3.438913 3.417595
4 4.734337 4.894237 4.880029
5 6.141955 6.343719 6.320095
6 7.558279 7.817389 7.772669
7 8.979105 9.230058 9.30246
8 10.39846 10.69646 10.76845
9 11.82906 12.19558 12.24614

10 13.21864 13.5738 13.72036
11 14.63024 15.01652 15.1978
12 16.06277 16.49044 16.63393

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12

10M 50M 100Mpercentage

Encryption layer k

(b) Performance of Crypt-DAC and
HOre at user side

Fig. 10. Performance in file reading

regardless of the file size.
File reading/writing: We evaluate the performance of IMre,

DEre, HOre, and Crypt-DAC in file reading/writing. The total
execution time (including both computation and communica-
tion time) is affected by file size. We vary the file size from
10 M, 50 M to 100 M. For Crypt-DAC, it is also affected by
the number of encryption layers of files. We set l = 3 and vary
k (from 1 to 12) to evaluate the performance trend of Crypt-
DAC in a long time (one year). We evaluate Crypt-DAC in
the worst case by encrypting files with the upper bound l×k
of encryption layers.

Figure 10 compares the execution time of IMre/DEre and
Crypt-DAC in reading operations. Figure 10(a) shows the
additional cost of Crypt-DAC comparing with IMre/DEre. We
can see that the additional cost is moderate (7.2% when k =
5). The reason is that Crypt-DAC uses AES scheme multiple
times to encrypt/decrypt files. Figure 10(b) shows the relation
of the additional cost with the parameter k. We can see that
the additional cost increases slowly as k increases regardless
of file size (1.4% each time k increases 1). The reason is
that AES is a lightweight cryptographic primitive. Moreover,
the administrator can adjust the upper bound l×k to control
this additional cost. Considering the performance advantage
of Crypt-DAC in revocation, we believe that this extra cost is
acceptable. Table II compares the execution time of HOre and
Crypt-DAC in reading operations. We see that HOre takes 80
computation times higher than Crypt-DAC (k = 5) and 6.7 total
(computation and communication) times higher than Crypt-
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TABLE I
PERFORMANCE OF CRYPT-DAC/HORE IN FILE READING

File size
Crypt-DAC HOre Cost of HOre

Comp/Comm Comp/Comm Comp/Total
10 M 1.1/15.8 Sec 98.6/17.7 Sec 82.8/6.8 times

50 M 6.1/81.8 Sec 491.1/90.4 Sec 80.2/6.6 times

100 M 12.3/164.1 Sec 982.3/176.8 Sec 79.8/6.5 times

TABLE II
PERFORMANCE IN FILE WRITING

File size
Others HOre Cost of HOre

Comp/Comm Comp/Comm Comp/Total
10 M 1.1/16.8 Sec 98.6/17 Sec 88.3/6.4 times

50 M 6.1/84.9 Sec 490.4/89.1 Sec 79.5/6.3 times

100 M 12.3/168 Sec 981.7/175.1 Sec 79.8/6.4 times

DAC (k = 5). The reason is that HOre uses homomorphic
symmetric encryption to encrypt files, and the overhead of
which is comparable with public key encryption schemes.
Instead, Crypt-DAC uses symmetric key encryption scheme
to do so.

Table III compares the execution time of writing operations.
We see that IMre, DEre and Crypt-DAC takes same time.
The reason is that all the three schemes use symmetric key
encryption scheme to encrypt files and the delayed de-onion
encryption adopted in Crypt-DAC incurs no additional cost at
user side. Besides, HOre takes 82 computation times higher
than Crypt-DAC and 6.3 total (computation and communica-
tion) times higher than Crypt-DAC in average. The reason is
that HOre uses homomorphic symmetric encryption to encrypt
files, and the overhead of which is comparable with public key
encryption schemes. Instead, Crypt-DAC uses symmetric key
encryption scheme to do so.

VII. RELATED WORK

Current cryptographically enforced access control schemes
can be classified as follows.

Hierarchy access control: Gudes et al. [27] explore cryp-
tography to enforce hierarchy access control without con-
sidering dynamic policy scenarios. Akl et al. [28] propose
a key assignment scheme to simplify key management in
hierarchical access control policy. Also, this work does not
consider policy update issues. Later, Atallah et al. [29] propose
a method that allows policy updates, but in the case of
revocation, all descendants of the affected node in the access
hierarchy must be updated, which involves high computation
and communication overhead.

Role based access control: Ibraimi et al. [30] crypto-
graphically support role based access control structure using
mediated public encryption. However, their revocation oper-
ation relies on additional trusted infrastructure and an active
entity to re-encrypt all affected files under the new policy.
Similarly, Nali et al. [31] enforce role based access control

structure using public-key cryptography, but requires a series
of active security mediators. Ferrara et al. [32] define a secure
model to formally prove the security of a cryptographically-
enforced RBAC system. They further show that an ABE-based
construction is secure under such model. However, their work
focuses on theoretical analysis.

Attribute based access control: Pirretti et al. [33] propose
an optimized ABE-based access control for distributed file
systems and social networks, but their construction does not
explicitly address the dynamic revocation. Sieve [23] is a
attribute based access control system that allows users to
selectively expose their private data to third web services.
Sieve uses ABE to enforce attribute based access policies
and homomorphic symmetric encryption [24] to encrypt data.
With homomorphic symmetric encryption, a data owner can
delegate revocation tasks to the cloud assured that the privacy
of the data is preserved. This work however incurs prohibitive
computation overhead since it adopts the homomorphic sym-
metric encryption to encrypt files.

Access matrix: GORAM [25] allows a data owner to
enforce an access matrix for a list of authorized users and
provides strong data privacy in two folds. First, user access
patterns are hidden from the cloud by using ORAM techniques
[26]. Second, policy attributes are hidden from the cloud by us-
ing attribute-hiding predicate encryption [21], [22]. The cryp-
tographic algorithms, however, incur additional performance
overhead in data communication, encryption and decryption.
Also, GORAM does not support dynamic policy update. Over-
encryption [34], [35] is a cryptographical method to enforce an
access matrix on outsourced data. Over-encryption uses double
encryption to enforce the whole access matrix. As a result,
the administrator has to rely on the cloud to run complex
algorithms over the matrix to update access policy, assuming
a high level of trust on the cloud.

VIII. CONCLUSION

We presented Crypt-DAC, a system that provides practical
cryptographic enforcement of dynamic access control in the
potentially untrusted cloud provider. Crypt-DAC meets its
goals using three techniques. In particular, we propose to dele-
gate the cloud to update the policy data in a privacy-preserving
manner using a delegation-aware encryption strategy. We
propose to avoid the expensive re-encryptions of file data at the
administrator side using a adjustable onion encryption strategy.
In addition, we propose a delayed de-onion encryption strategy
to avoid the file reading overhead. The theoretical analysis
and the performance evaluation show that Crypt-DAC achieves
orders of magnitude higher efficiency in access revocations
while ensuring the same security properties under the honest-
but-curious threat model compared with previous schemes.
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Fig. 15. Accuracy comparisons under varying error rates.

error rates and provides accurate estimation results even when
the error rate reaches 30%.

VII. CONCLUSION

In this paper, we propose a cardinality estimation protocol
based on Zero-One Estimator, which improves the estimation
time efficiency in meeting arbitrary accuracy requirement. ZOE
only requires 1-bit response from the RFID tags per estima-
tion round. Moreover, ZOE rapidly converges to optimal pa-
rameter configurations and achieves high estimation efficiency.
We enhance the robustness of cardinality estimation over noisy
channels. We implement a prototype system based on the GNU-
Radio/USRP platform in concert with the WISP RFID tags.
ZOE only requires slight updates to the EPCglobal C1G2 stan-
dard. We also conduct extensive simulations to evaluate the per-
formance of ZOE in large-scale settings. The results demon-
strate that ZOE outperforms the most recent cardinality estima-
tion protocols.
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