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Abstract—Semantic searching over encrypted data is a crucial
task for secure information retrieval in public cloud. It aims
to provide retrieval service to arbitrary words so that queries
and search results are flexible. In existing semantic searching
schemes, the verifiable searching does not be supported since it
is dependent on the forecasted results from predefined keywords
to verify the search results from cloud, and the queries are
expanded on plaintext and the exact matching is performed by the
extended semantically words with predefined keywords, which
limits their accuracy. In this paper, we propose a secure verifiable
semantic searching scheme. For semantic optimal matching on
ciphertext, we formulate word transportation (WT) problem to
calculate the minimum word transportation cost (MWTC) as
the similarity between queries and documents, and propose a
secure transformation to transform WT problems into random
linear programming (LP) problems to obtain the encrypted
MWTC. For verifiability, we explore the duality theorem of LP
to design a verification mechanism using the intermediate data
produced in matching process to verify the correctness of search
results. Security analysis demonstrates that our scheme can
guarantee verifiability and confidentiality. Experimental results
on two datasets show our scheme has higher accuracy than other
schemes.

Index Terms—public cloud, results verifiable searching, secure
semantic searching, word transportation.

I. INTRODUCTION

INHERENT scalability and flexibility of cloud computing
make cloud services so popular and attract cloud customers

to outsource their storage and computation into the public
cloud. Although the cloud computing technique develops
magnificently in both academia and industry, cloud security
is becoming one of the critical factors restricting its devel-
opment. The events of data breaching in cloud computing,
such as the Apple Fappening and the Uber data breaches,
are increasingly attracting public attention. In principle, the
cloud services are trusted and honest, should ensure data
confidentiality and integrity according to predefined protocols.
Unfortunately, as the cloud server providers take full control
of data and execute protocols, they may conduct dishonest
behavior in the real world, such as sniffing sensitive data or
performing incorrect calculations. Therefore, cloud customers
should encrypt their data and establish a result verification
mechanism before outsourcing storage and computation to the
cloud. Since Song et al. [1] proposed the pioneering work
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about the searchable encryption scheme, searchable encryption
has attracted significant attention. However, the traditional
searchable encryption schemes require that query words must
be the predefined keywords in the outsourced documents,
which leads to an obvious limitation of these schemes that
similarity measurement solely base on the exact matching
between keywords in the queries and documents. Therefore,
some works proposed semantic searching schemes to provide
retrieval service to arbitrary words, making the query words
and search results flexible and uncertain. However, the verifi-
able searching schemes are dependent on forecasting the fixed
results of predefined keywords to verify the correctness of the
search result returned by the cloud. Therefore, the flexibility of
semantic schemes and the fixity of verifiable schemes enlarge
the gap between semantic searching and verifiable searching
over encrypted data. Although Fu et al. [2] proposed a verifi-
able semantic searching scheme that extends the query words
to get the predefined keywords related to query words, then
they used the extended keywords to search on a symbol-based
trie index. However, their scheme only verifies whether all the
documents containing the extended keywords are returned to
users or not, and needs users to rank all the documents for
getting top-k related documents. Therefore, it is challenging
to design a secure semantic searching scheme to support
verifiable searching.

Most of the existing secure semantic searching schemes
consider the semantic relationship among words to perform
query expansion on the plaintext, then still use the query words
and extended semantically related words to perform exact
matching with the specific keywords in outsourced documents.
We can roughly divide these schemes into three categories:
secure semantic searching based synonym [3], [4], secure
semantic searching based mutual information model [5], [6],
secure semantic searching based concept hierarchy [2], [7],
[8]. We can see that these schemes only use the elementary
semantic information among words. For example, synonym
schemes only use synonym attributes; mutual information
models only use the co-occurrences information. Although
Liu et al. [9] introduce the Word2vec technique to utilize
the semantic information of word embeddings, their approach
damages the semantic information due to straightly aggre-
gating all the word vectors. We think that secure semantic
searching schemes should further utilize a wealth of semantic
information among words and perform optimal matching on
the ciphertext for high search accuracy.

In this paper, we propose a secure verifiable semantic
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searching scheme that treats matching between queries and
documents as an optimal matching task. We treat the document
words as “suppliers,” the query words as “consumers,” and the
semantic information as “product,” and design the minimum
word transportation cost (MWTC) as the similarity metric
between queries and documents. Therefore, we introduce word
embeddings to represent words and compute Euclidean dis-
tance as the similarity distance between words, then formulate
the word transportation (WT) problems based on the word
embeddings representation. However, the cloud server could
learn sensitive information in the WT problems, such as the
similarity between words. For semantic optimal matching on
the ciphertext, we further propose a secure transformation
to transform WT problems into random linear programming
(LP) problems. In this way, the cloud can leverage any ready-
made optimizer to solve the RLP problems and obtain the
encrypted MWTC as measurements without learning sensitive
information. Considering the cloud server may be dishonest
to return wrong/forged search results, we explore the duality
theorem of linear programming (LP) and derive a set of
necessary and sufficient conditions that the intermediate data
produced in the matching process must satisfy. Thus, we can
verify whether the cloud solves correctly RLP problems and
further confirm the correctness of search results. Our new ideas
are summarized as follows:

1. Treating the matching between queries and documents as
an optimal matching task, we explore the fundamental
theorems of linear programming (LP) to propose a se-
cure verifiable semantic searching scheme that performs
semantic optimal matching on the ciphertext.

2. For secure semantic optimal matching on the ciphertext,
we formulate the word transportation (WT) problem and
propose a secure transformation technique to transform
WT problems into random linear programming (LP)
problems for obtaining the encrypted minimum word
transportation cost as measurements between queries and
documents.

3. For supporting verifiable searching, we explore the dual-
ity theorem of LP and present a novel insight that using
the intermediate data produced in the matching process
as proof to verify the correctness of search results.

II. RELATED WORK

Since Song et al. [1] proposed the notion of searching
over encrypted cloud data, searchable encryption has received
significant attention for its practicability in the past 20 years.
Therefore, many works have made efforts on the security as
well as functionality in the searchable encryption field.

Along the research line about security, many works for-
mulate the definitions of security as well as novel attack
pattern against the existing schemes. Goh et al. [10] formulated
a security model for document indexes known as semantic
security against adaptive chosen keyword attack (IND-CKA),
which requires the document indexes not to reveal contents of
documents. However, we note that the definition of IND-CKA
does not indicate that the queries must be secure. Curtmola et
al. [11] further improved security definitions for symmetric

searchable encryption, then put forth chosen-keyword attacks
and adaptive chosen-keyword attacks. Besides, Islam et al. [12]
first introduced the access pattern disclosure used to learn
sensitive information about the encrypted documents, then Liu
et al. [13] presented a novel attack based on the search pattern
leakage. Stefanov et al. [14] introduced the notions of forward
security and backward security for the dynamic searchable
encryption schemes that support data addition and deletion.

Along another research line about functionality, many works
introduced practical functions to meet the demand in practice,
such as ranked search and semantic searching for improving
search accuracy. Additionally, some works proposed verifiable
searching schemes to verify the correctness of search results.
Ranked Search over Encrypted Data. Ranked search means
that the cloud server can calculate the relevance scores be-
tween the query and each document, then ranks the documents
without leaking sensitive information. The notion of single-
keyword ranked search was proposed in [15] that used a
modified one-to-many order-preserving encryption (OPE) to
encrypt relevance scores and rank the encrypted documents.
Cao et al. [16] first proposed a privacy-preserving multi-
keyword ranked search scheme (MRSE), which represents
documents and queries with binary vectors and uses the secure
kNN algorithm (SeckNN) [17] to encrypt the vectors, then use
the inner product of the encrypted vectors as the similarity
measure. Besides, Yu et al. [18] introduced homomorphic
encryption to encrypt relevance scores and realize a multi-
keyword ranked search scheme under the vector space model.
Recently, Kermanshahi et al. [19] used various homomor-
phic encryption techniques to propose a generic solution for
supporting multi-keyword ranked searching schemes that can
resist against several attacks brought by OPE-based schemes.
Secure Semantic Searching. A general limitation of tradi-
tional searchable encryption schemes is that they fail to utilize
semantic information among words to evaluate the relevance
between queries and documents. Fu et al. [3] proposed the
first synonym searchable encryption scheme under the vector
space model to bridge the gap between semantically related
words and given keywords. They first extended the keyword
set from the synonym keyword thesaurus built on the New
American Roget’s College Thesaurus (NARCT), then used the
extended keyword set to build secure indexes with SeckNN.
Using the order-preserving encryption algorithm, [5] and [6]
presented secure semantic searching schemes based on the
mutual information model. Xia et al. [6] proposed a scheme
that requires the cloud to constructs a semantic relationship
library based on the mutual information used in [20]. However,
any schemes based on the inverted index can calculate the
mutual information model. Using the SeckNN algorithm, [7],
[8], [2] proposed secure semantic searching schemes based on
the concept hierarchy. For example, Fu et al. [8] proposed a
central keyword semantic extension searching scheme which
calculates weights of query words based on grammatical
relations, then extends the central word based on the concept
hierarchy tree from WordNet. Inspired by word embedding
used in plaintext information retrieval [21], [22], Liu et al. [9]
introduced the Word2vec to represent both queries and docu-
ments as compact vectors. However, their approach damages

Authorized licensed use limited to: Murdoch University. Downloaded on June 16,2020 at 04:46:08 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.3001728, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X 2020 3

the semantic information of word embedding due to straightly
aggregating all the word vectors of the words.
Verifiable Searching over Encrypted Data. Verifiable
searching over encrypted data requires the searchable encryp-
tion schemes to verify the correctness of search results. Some
works only verify whether all of the encrypted documents con-
taining the single query word returned by the cloud. The first
verifiable secure searching scheme was proposed in [23] that
leverages a specific trie-like index. Zhu et al. [24] proposed a
generic verifiable scheme, which uses Merkle Patricia Tree and
Incremental Hash to build the proof index. Some works focus
on verifying the correctness of ranked search results by fore-
seeing the ranked results. Wang et al. [25] proposed a single
keyword ranked verification scheme based on the hash chain.
Liu et al. [26] present a verifiable dynamic searching scheme
leveraging the RSA accumulator to build a verifiable matrix for
verifiable updates and searches, which fails to support multi-
keyword searching. Sun et al. [27] proposed a multi-keyword
ranked verifiable searching scheme via using Merkle Hash
tree and cryptographic signature to create a verifiable MDB-
tree. For the multi data owners scenario, Zhang et al. [28]
proposed a deterrent-based scheme using anchor data to verify
the correctness of search results. However, their scheme is
unable to support semantic searching and introduces multiple
rounds of communication between data owners.

III. PROBLEM FORMULATION
In this section, we define the system architecture, the

security model, and the main notations used in this paper.

A. System Architecture
As illustrated in Fig. 1, there are three entities involved in

our system: the data owner, data users, and the cloud server.
The data owner has a lot of useful documents, but only has

limited resources on the local machines. Therefore, the owner
is highly motivated to perform Initialize () for initializing the
proposed scheme. The owner encrypts documents F to get
ciphertext documents C with secret key K, then outsources C
to the cloud server. The data owner builds forward indexes I ,
then sends indexes I and K to data users.

Data users are the searching requesters that send the trap-
door of a query to the cloud server for acquiring top-k related
documents. Specifically, users input arbitrary query words q,
then perform BuildRLP () to generate word transportation
problems Ψ, after transform Ψ to random linear programming
problems Ω and the corresponding constant terms ∆ as a trap-
door. Afterward, users receive top-k encrypted documents and
proofs Λ returned from the cloud. Users perform VerDec () to
decrypt documents when Λ passes our verification mechanism.

The cloud server is an intermediate service provider that
stores the encrypted document dataset C and performs the
retrieval process. Once receiving the trapdoor, the cloud server
performs SeaPro () for leveraging any ready-made optimizer
to solve the Ω, then obtains the encrypted minimum word
transportation cost values with ∆. The cloud ranks the values
in ascending order and returns the top-k encrypted documents
to users. In the process, the cloud server also provides proofs
Λ for proving the correctness of the search results.

Figure 1. The system architecture of our secure verifiable semantic searching
scheme.

B. Security Model

We assume that the data owner is trusted, and the data users
are authorized by the data owner. The communication channels
between the owner and users are secure on existing security
protocols such as SSL, TLS.

With regard to the cloud server, our scheme resists a more
challenging security model which is beyond the “semi-honest
server” used in other secure semantic searching schemes [3],
[4], [5], [6], [7], [8], [9]. In our model, the dishonest cloud
server attempts to return wrong/forged search results and
learn sensitive information, but would not maliciously delete
or tamper with the outsourced documents. Therefore, our
secure semantic scheme should guarantee the verifiability, and
confidentiality under such a security model.

As for verifiability, we first re-formalized the definitions of
the Result Forgeries Attack and Proof Forgeries Attack in [24],
then adopt a game-based security definition to analyze the
verifiability of the proposed scheme in Section VII.
Definition 1 (Result Forgeries Attack). The Result Forgeries
Attack is that a dishonest cloud server attempts to return erro-
neous search results to the users for some reasons. Formally, let
q be arbitrary query words, and C be the encrypted documents.
Then, let T (C, q) denote the correct search result, let R(C, q)
denote the search result returned from the cloud server. In this
attack,R(C, q) 6= T (C, q).
Definition 2 (Proof Forgeries Attack). The Proof Forgeries
Attack is that a dishonest cloud server attempts to return erro-
neous search results and forged proofs to the users. The cloud
must generate some forged proofs at a small computational cost
for passing the result verification mechanism. Formally, let q be
arbitrary query words, C be the encrypted documents. Next,
let V(C, q,Λ) = 0 denote the proof Λ pass the verification;
otherwise V(C, q,Λ) > 0. Then, let C(Λ) denote the real
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proofs, let F(Λ) denote the proofs returned from the cloud. In
this attack, V(C, q,F(Λ)) = 0 and F(Λ) 6= C(Λ).

As for confidentiality, we follow the widely-accepted
Real/Ideal simulation [11], [24], [29] to analyze the confi-
dentiality of symmetric searchable encryption schemes. Below
we give the definition of confidentiality with respect to the
verifiable semantic searching scheme we are going to propose.
Definition 3 (Confidentiality). Our verifiable secure semantic
searching scheme is secure against adaptively chosen query
attack, if for any PPT stateful adversary A, there exists a PPT
stateful simulator S, L is stateful leakage algorithms, consider
the following probabilistic experiments:

RealA(ε) : The adversary A chooses dataset F for a chal-
lenger. The challenger runs {K, I, C} ← Initialize (1ε, F ),
where ε is our security parameter. A makes a polynomial num-
ber of adaptive queries q. For any query q, the challenger acts
as a data user and calls (Ω,∆)← BuildRLP (q, I, 1ε, CV ). A
act as the cloud server and runs SeaPro (). Finally, A returns a
bit b as the output of the experiment.

IdealA,S(ε) : The adversary A chooses a document dataset
F and makes a polynomial number of adaptive queries q for a
simulator S. Given L, S generates and sends C to A, then as a
data user to generate the trapdoor, namely Ω and ∆. Finally, A
acts as the cloud server and returns a bit b, which is the output
of the experiment.

A semantic searching scheme isL-confidential if for any PPT
adversary A, there exists a PPT simulator S such that:
|Pr [RealA(ε) = 1]− Pr [IdealA,S(ε) = 1]| ≤ negl(ε)

where negl(ε) is a negligible function.

C. Notations

The main notations used in this paper are shown as follows:
• q: The query inputted from a data user.
• d: The number of documents in the dataset.
• m: The number of keywords in a document.
• n: The number of query words in the query.
• F : Plaintext documents dataset F = {f1, f2 . . . fi . . . fd},

where fi denotes a document in the F .
• C: Encrypted documents C = {c1, c2 . . . ci . . . cd}, where
ci denotes a document in the C.

• Ψ: WT problems for the q and documents, and Ψ =
{ψ1, ψ2 . . . ψi . . . ψd}, where ψi denotes a WT problem
for the q with fi.

• Ω: RLP problems for the q and documents, and Ω =
{ω1, ω2 . . . ωi . . . ωd}, where ωi denotes a RLP problem
for the q with fi.

• θ: The dual problems of the RLP problem ω.
• ∆: Constant terms of every RLP problems, and ∆ =
{δ1, δ2 . . . δi . . . δd}, where δi denotes the constant term
of the RLP problem ωi.

• Λ: Proofs for every RLP problems, and Λ =
{λ1, λ2 . . . λi . . . λd}, where λi denotes the proof for ωi.

• β: The minimum word transportation cost value of a WT
problem.

• Π: Optimal values of RLP problems, and Π =
{π1, π2 . . . πi . . . πd}, where πi denotes the optimal value
of the RLP problem ωi.

Table I
THE EUCLIDEAN DISTANCE VALUES BETWEEN WORDS

university college professor office
university 0 4.94 5.25 6.82

college 4.94 0 5.11 5.18
professor 5.25 5.11 0 5.48

office 6.82 5.18 5.48 0

• Ξ: The encrypted minimum word transportation cost
values as measurements between q and documents, and
Ξ = {ξ1, ξ2, ξ3 . . . ξi . . . ξd}, where ξi denotes the mea-
surement between q and fi.

IV. PRELIMINARIES

A. Word Embedding

Word embedding is a representative method for words in
vector space, through which we can preserve the fundamen-
tal properties of words and the semantic relations between
them. Neural language models [30], [31], [32] are trained to
minimize the prediction error to learn vector representations
for words. Therefore, we can perform algebraic operations
with word embeddings to probe semantic information between
words. As illustrated in Table I, take “university, college,
professor, and office” as an example, the Euclidean distance
values are just in line with our intuition that the more relevant
the words are, the smaller the Euclidean distance is. Word
embedding has been studied in plaintext information retrieval
tasks, such as query expansion [21] zero-shot retrieval [22]
and cross-modal retrieval [33]. In this paper, we use word
embeddings to capture semantic information between words
without revealing semantic information to the cloud server.

B. Earth Mover’s Distance

Earth Mover’s Distance (EMD) is introduced in [34], [35]
as a metric in computer vision to capture the signatures
distribution differences between images. The name of EMD
comes from its intuitive interpretation: Given two distributions,
we regard one as a mass of earth spread properly in space,
the other as a collection of holes in that same space. Then,
EMD is the result that the minimum amount of work cost
to fill the holes with earth. As EMD has advantages in
representing problems involving multifeatured signatures, it
has been applied to some practical scenarios, such as gesture
recognition [36], music genre classification [37], document
classification [38], plaintext retrieval [39] and gene identifica-
tion [40]. We observe that EMD is a particular case of linear
programming problems. Therefore, in this paper, we explore
the fundamental theorems of linear programming and security
algorithms to design our scheme for realizing secure semantic
optimal matching on the ciphertext.

V. PROPOSED APPROACHES

In this section, we present the proposed core approaches in
Fig. 1, namely, the word transportation problem, the secure
transformation technique, and the verification mechanism.
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Figure 2. An example of the word transportation optimal matching. The
relative area of the shadow represents the weight of a word; the length of the
line segment represents the relative Euclidean distance between two connected
words; as for the value M-N on the line segment, M represents the Euclidean
distance between two words, N represents the amount of transportation
between them. In this example, the MWTC between document-1 and the
query is 4.794; the MWTC between document-2 and the query is 6.003, so
document-1 is more relevant to the query compared with document-2.
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Figure 3. An example of the forward indexes of documents. Forward indexes
are the data structure storing the mapping from each document to its keywords.
In our scheme, each keyword carries a normalized weight representing the
relevant score between the keyword and a specific document.

A. Word Transportation Problem for Optimal Matching

Treating the matching between queries and documents as an
optimal matching task, we formulate the word transportation
(WT) problem following the optimal transportation problem of
linear programming. We utilize WT problems to calculate the
minimum word transportation cost (MWTC) as the similarity
metric between queries and documents, as illustrated in Fig 2.

To represent the documents in WT problems, we introduce
the forward indexes as semantic information of documents.
An example of forward indexes, as illustrated in Fig. 3. We
define each keyword and its weight in the forward index of
a document as the keywords distributions for the document.
Therefore, we need to select keywords for each document and
calculate the weight of each keyword in a specific document.
Without loss of generality, we use TF-IDF (term frequency-
inverse document frequency) as a criterion to select keywords
in our scheme. Besides, we calculate weights via using (1):

weight (w, f) =
1

|fi|
· (1 + ln fi,w) · ln

(
1 +

d

fw

)
, (1)

where w denotes a specific keyword, f expresses a specific
document, |fi| indicates the length of the document, fi,w is
the term frequency TF of the keyword w in the f , fw denotes
the number of documents that contain the keyword w and d is























1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 1 0

0 1 0 1 0 1

Figure 4. An example of the matrix V, when m=3, n=2. The matrix V is
used to build the constraint Vx = W in our word transportation problem.

the number of documents in the dataset. We adopt the same
method to represent the query and define the weights of query
words are equivalent. In this work, we normalize the amount
of weight of each document/query to 1.

Given forward indexes of documents and the query, we
treat the document words as “suppliers,” the query words
as “consumers,” and the semantic information as “product.”
Therefore, given the forward index of a document f and the
query q, we can formulate the WT problem as follows:

WT(f, q) = min
m∑
i=1

n∑
j=1

fi,jdi,j

subject to
n∑

j=1

fi,j = efi , i = 1, 2, . . . ,m

m∑
i=1

fi,j = eqj , j = 1, 2, . . . , n

fi,j ≥ 0
m∑
i=1

n∑
j=1

fi,j = 1 ,

(2)

where the di,j represents the transportation cost of each
movement, namely, the Euclidean distance values between
word embeddings in this work. The fi,j denotes the trans-
portation value in a word transportation strategy. The m and
n indicate the number of keywords in a document and the
query, respectively. The efi and eqj denote the weight of each
word in the document and the query, respectively. Next, we
use the matrixes expression method to express (2), as follows:

min cTx

subject to Vx = W

Ix ≥ 0 ,

(3)

here, we still define symbol m and n as the number of
keywords in a document and the query, respectively. The
cTx denotes the total word transportation cost between the
query and a document. The symbol c is an mn × 1 cost
vector whose elements are Euclidean distance values between
word embeddings. The symbol x denotes an mn× 1 decision
vector, which means one of the feasible solutions for the
word transportation problem. The Vx = W is a constraint
condition that requires the amount of each word transportation
equal to its weight. The symbol V is an (m + n) × mn
known matrix whose elements are 0 or 1. To facilitate the
understanding, we show an example for V (when m=3, n=2),
as illustrated in Fig 4. The symbol W is an (m+n)×1 weight
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vector, where the first m elements are the weights of document
keywords and the last n elements are the weights of query
words. As the constraint Vx = W implies the total amount
of transportation is equal to the normalized total weight 1, we
remove the constraint

∑m
i=1

∑n
j=1 fi,j = 1 which is in (2),

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n. The symbol I is
an mn ×mn identity matrix. We define constraint condition
Ix ≥ 0 is equivalent to that xi is not less than 0, where
i = 1, 2, . . . ,mn. The Ix ≥ 0 is essential but easy to be
ignored. In a word, we use ψ = (c,V,W, I) to denote the WT
problem in (3). Besides, we define that β indicates the optimal
value of the WT problem ψ, namely, the MWTC between the
query and a document. Therefore, the document and the query
are more related to each other when β is smaller.

In this work, we calculate the semantic difference between
the queries and documents via the word transportation optimal
matching. In this way, we can observe that the document is
more semantically related to the query when there is less
transportation cost between them.

B. Secure Transformation Technique

Word transportation problems can not be applied directly to
the secure semantic searching scheme due to that the original
WT problem can reveal sensitive information. Therefore, we
propose a secure transformation technique to realize semantic
optimal matching on the ciphertext so that the confidentiality
and integrity of the information in word transportation prob-
lems can be guaranteed.

In our scheme, the users utilize our secure transformation
technique to transform the WT problems into random linear
programming (RLP) problems so that the cloud can lever-
age any ready-made optimizer to solve the RLP problems
and get the encrypted minimum word transportation cost
(EMWTC) without learning sensitive information. Specifi-
cally, our secure transformation technique encrypts each WT
problem ψ = (c,V,W, I) with a one-time secret key KT =
(A,Q, γ, r,R), where A is an mn ×mn random invertible
matrix, Q is an (m+n)× (m+n) random invertible matrix,
γ is a real positive value, r is an mn× 1 random vector and
R is an mn×mn generalized permutation matrix.

We first transform the original objective function cTx to
the encrypted form cTAy − cT r with x = Ay − r. The
symbol y denotes an mn× 1 decision vector, which denotes
one of the feasible solutions for the RLP problem. Note that,
we require each ri is no less than 0, where i=1, 2, . . . ,mn.
With x replaced by Ay − r, we transform the original WT
problem ψ to (4). In (4), we define the constraint condition
IAy ≥ Ir is equivalent to that the i-th element in the vector
T1 = IAy is not less than the i-th element in the vector
T2 = Ir, where i=1, 2, . . . ,mn.

min cTAy − cT r

subject to VAy = W + Vr

IAy ≥ Ir .

(4)

Next, we use a random invertible matrix Q to encrypt the
weight vector W, and then we use a real positive value γ
to protect the optimal value. Meanwhile, we leave out the

Figure 5. An example of the generation process of the matrix R, when m=3,
n=2. The matrix R is an important part of secret key KT , which is used to
hide sensitive information of non-negativity constraint Ix ≥ 0 in our word
transportation problem. The nonzero elements in R are reciprocal of elements
in the random vector r.

identity matrix I due to IA = A is established. Therefore,
we transform the original WT problem ψ to (5). In (5), we
define the constraint condition Ay ≥ r is equivalent to that
the i-th element in the vector T3 = Ay is not less than the
i-th element in the vector r, where i=1, 2, . . . ,mn.

min γcTAy − γcT r
subject to QVAy = Q(W + Vr)

Ay ≥ r .

(5)

To encrypt Ay ≥ r, we construct an mn×mn generalized
permutation matrix R based on the elements in r. Specifically,
the nonzero elements in R are reciprocal of elements in
the r. We show an example for r and R (when m = 3,
n = 2), as illustrated in Fig.5. Therefore, we transform the
ψ to (6). In (6), we define the constraint condition RAy ≥ 1
is equivalent to that the elements in the vector T4 = RAy
are not less than 1, where i=1, 2, . . . ,mn.

min γcTAy − γcT r
subject to QVAy = Q(W + Vr)

RAy ≥ 1 .

(6)

The δ = γcTr does not affect the decision vector y since δ
is a constant term when γ and r are appointed. Therefore, we
use the (7) to express the final RLP problem via temporarily
omitting the constant term δ. In (7), we define constraint
condition I′y ≥ 1 is equivalent to that the i-th element in
the vector T5 = I′y is not less than 1, where i=1, 2, . . . ,mn.

min c′Ty

subject to V′y = W′

I′y ≥ 1 ,

(7)

where V′ = QVA, W′ = Q(W + Vr), I′ = RA, c′ =
(γcTA)T . We use ω = (c′,V′,W′, I′) to denote the random
linear programming problem of a specific WT problem ψ. The
RLP problem ω has a similar structure to the WT problem ψ
as in (7) and (3). Therefore, we can get the optimal value π
and the decision vector y of each RLP ω by solving the ω
leveraging any ready-made optimizer, such as GUROBI.

We define the EMWTC as the measurement ξ=π-δ which
is used to rank the documents. The smaller the ξ becomes, the
smaller the gap between the query and document is. Therefore,
we succeed in calculating the measurements between a query
and documents in a privacy-preserving way. After solving

Authorized licensed use limited to: Murdoch University. Downloaded on June 16,2020 at 04:46:08 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.3001728, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X 2020 7

all RLP problems Ω = {ω1, ω2, ω3 . . . ωi . . . ωd}, the cloud
ranks all the measurements Ξ = {ξ1, ξ2, ξ3 . . . ξi . . . ξd}
in ascending order and returns the top-k related encrypted
documents to data users. We give a theoretical analysis of
the reason why the ξ can be the measurement between the
query and a document in section VII.

C. Result Verification Mechanism

To verify the correctness of search results, we design a result
verification mechanism using the intermediate data produced
in the matching process.

As the optimal matching on the ciphertext is a linear
programming (LP) task, we further explore the duality theorem
of LP and use the strong theorem of LP problem to design our
verification mechanism, inspired by [41]. We first construct the
dual programming problem of each RLP problem ω. Given
the (7) of ω, we adopt Lagrange multipliers to construct its
dual problem θ, as follows:

max g(s, t)

subject to V′T s + I′T t = c′

t ≥ 0

g(s, t) = W′T s + LT t ,

(8)

where, g(s, t) is the objective function of the dual problem
θ = (c′,V′,W′, I′,L), L is an (m + n) × 1 vector whose
elements are 1. In the (8), s and t are (m + n) × 1 decision
vectors of the dual problem θ.

In [42], the strong theorem of the LP problem demonstrates
that if y and (s, t) are the feasible decision vectors for ω and
θ respectively, y and (s, t) lead to the same optimal value for
ω and θ, then y and (s, t) are the optimal decision vectors for
ω and θ, respectively. Therefore, we get a corollary in (9) as
the verification condition to verify whether the cloud server
performs correct calculations for each RLP problem.

c′Ty =W′T s + LT t

V′y = W′

I′y ≥ 1

V′T s + I′T t = c′

t ≥ 0 .

(9)

In our scheme, the cloud server solves each RLP problem
and its dual problem at the same time, then packs the op-
timal decision vectors y and (s, t) as a proof λ. Therefore,
the users receive proofs Λ = {λ1, λ2, λ3 . . . λi . . . λd} and
perform verification mechanism according to the verification
condition (9). Finally, the users can verify whether the cloud
server performs correct calculations for all RLP problems
and determine the correctness for the search results. On the
other hand, the cloud would be honest because the cloud
server knows, the users would catch him when the cloud
behaves dishonestly. In our verification mechanism, we do not
mandate the users to calculate the encrypted minimum word
transportation cost values and rank them for saving computing
resources. Therefore, we make an assumption that if a rational
cloud has run the complex calculation to solve RLP problems,
it will perform the low computational cost ranking task. We

Figure 6. Overview of our secure verifiable semantic searching scheme.

give theoretical analysis and experimental analysis to indicate
the rationality of our assumption in section VII and VIII.

VI. OUR SCHEME
In this section, we present the detailed design of our scheme

that consists of four phases, namely, Initialization, BuildRLP,
Search&Prove, Verification&Decryption. The overview of our
scheme, as illustrated in Fig. 6.

A. Initialization
In this phase, the data owner performs Initialize () to

initialize our scheme. To describe this algorithm in detail, we
split it into three algorithms, as follows:
K ← KeyGen (1ε) is a probabilistic secret key generation

algorithm, corresponding to the “Secret Key Generator” in Fig.
6. The data owner takes the security parameter ε as input, then
generates secret key K for encrypting documents.
C ← EncDoc(K,F ) is a deterministic algorithm, corre-

sponding to the “Symmetric Encryption” in Fig. 6. The data
owner takes the documents dataset F and the secret key K as
input, then generates the ciphertext dataset C.
I ← BuildIndex(F ) is a deterministic building index

algorithm, corresponding to the “Indexer” in Fig. 6. The data
owner takes F as input, then generates forward indexes I as
semantic information of documents.

The data owner first calls KeyGen() and EncDoc() to
generate a secret key K for encrypting documents dataset
F and get the ciphertext dataset C, then outsources C to
the cloud server. Afterward, the owner calls BuildIndex() to
build forward indexes I . In this algorithm, the data owner
extracts keywords and calculates weights for building forward
indexes as semantic information of documents. Finally, the
owner sends the secret key K and indexes I to data users.
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B. BuildRLP
In this phase, data users perform BuildRLP () to generate

trapdoor the searching query q. To describe this algorithm in
detail, we split it into three algorithms, as follows:

Ψ← BuildWT(q, I, E) is a deterministic algorithm, corre-
sponding to the “WT Builder” in Fig. 6. The users take query
q, forward indexes I and word embedding library E as input,
then generate word transportation problems Ψ for each pair of
query and each document.
KT ← TranKeyGen (1ε) is a probabilistic transformation

key generation algorithm, corresponding to the “One-Secret
Key Generator” in Fig. 6. The user takes the security parameter
ε as input, then generates one-time transformation secret key
KT = (A,Q, γ, r,R) for encrypting Ψ.

(Ω,∆) ← SecTran (Ψ,KT ) is a deterministic algorithm,
corresponding to the “Secure Transformation” in Fig. 6. The
users take WT problems Ψ and transformation key KT as
input, then generate random linear programming problems Ω
and the corresponding constant terms ∆.

The users first call BuildWT() to build WT problems Ψ for
the query and forward index of each document. Specifically,
The users use word embeddings to represent all words and
calculate Euclidean distance values between word embeddings,
then build word transportation problems Ψ according to the
proposed approach. After building WT problems Ψ, the data
users call TranKeyGen() to generate a one-time secure key
KT for encrypting Ψ. Then, the users call SecureTran() to
encrypt each ψi and get the corresponding RLP problem ωi

with its constant term δi, where ψi ∈ Ψ, ωi ∈ Ω, δi ∈ ∆, and
i = 1, 2, . . . , d. Finally, the user sends all RLP problems Ω
and the corresponding constant terms ∆ to the cloud server.

C. Search&Prove
In this phase, the cloud server performs SeaPro () to search

documents and generate proofs. To describe this algorithm
in detail, we split SeaPro () into two algorithms, namely,
SolveRLP () and Rank (), as follows:

(Π,Λ) ← SolveRLP(Ω) is a deterministic algorithm, cor-
responding to the “Any Ready-made Optimizer” in Fig. 6. The
cloud server takes RLP problems Ω as input, then generates
the optimal values Π and proofs Λ for RLP problems.

(Γ,Ξ) ← Rank(Π,∆, C, k) is a deterministic ranking
algorithm, corresponding to the “Subtractor” and “Ranker”
in Fig. 6. The cloud server takes optimal values Π, the
constant terms ∆, the ciphertext dataset C and the number
k as input, first calculates all the measurements Ξ, then
generates the top-k related encrypted documents Γ, where
Ξ = {ξ1, ξ2, ξ3 . . . ξi . . . ξd}, and i = 1, 2, . . . , d.

The cloud server calls SolveRLP() to solve RLP problems.
The cloud can leverage any ready-made optimizer to solve
each RLP ωi and get the corresponding optimal value πi
and proof λi, where ωi ∈ Ω, πi ∈ Π, λi ∈ Λ, and
i = 1, 2, . . . , d. The cloud calls RankDoc() to calculate each
encrypted minimum word transportation cost ξi = πi − δi as
measurement, where i = 1, 2, . . . , d. Then, the cloud ranks
measurements Ξ in ascending order and obtains the top-k
related encrypted documents Γ. Finally, the cloud returns the
top-k related encrypted documents Γ and proofs Λ to the users.

D. Verification&Decryption

In this phase, data users perform VerDec () to verify the
correctness of the search results and decrypt the top-k en-
crypted documents. To describe this algorithm in detail, we
split it into Verify () and DecDoc (), as follows:

(0 or α) ← Verify(Λ) is a deterministic verification algo-
rithm, corresponding to the “Verify ?” in Fig. 6. Data users
take proofs Λ as input, then generate the result of verification
0 or α, where α ∈ N∗, N∗ denotes the positive integer set.

Υ ← DecDoc(K,Γ) is a deterministic decryption algo-
rithm, corresponding to the “Documents Decryption” in Fig.
6. The users take the top-k related encrypted documents Γ and
secret key K as input, then generate the top-k related plaintext
documents Υ for the query q.

The users first call Verify() to verify the correctness of
the search results. The users verify the correctness of each
proof λi according to (9), thus verifying whether the cloud
performs the correct calculations for each RLP problem and
determining the correctness of the search result, where λi ∈ Λ,
and i = 1, 2, . . . , d. The Verify() will output 0 when the
verification pass; otherwise, this algorithm calls “Annunciator”
to output α as the warning which denotes the number of
failing proofs. The users call DecDoc() to decrypt the top-
k encrypted documents Γ with the secret key K and obtains
the top-k related documents Υ if the proofs Λ pass our result
verification mechanism.

VII. THEORETICAL ANALYSIS

In this section, we give theoretical analyses on the correct-
ness, rationality, and security of our scheme.

A. Correctness Analysis

We analyze the reason why the encrypted minimum word
transportation cost ξ can be used as a measurement.

Theorem 1: When y is the optimal decision vector of an RLP
problem ω, the corresponding x is the optimal decision vector
of the original WT problem ψ, where x = Ay − r.

Proof: We prove Theorem 1 by using the Reductio ad
ab surdum. We first suppose that x and y′ are the optimal
decision vectors for ψ and ω respectively, and there is no
mathematical relationship x = Ay′ − r between x and y′.
We can deduce cTx and γcTAy′ are the optimal values for
ψ and ω respectively. According to x = Ay − r and x′ =
Ay′− r , we can deduce γcTx′ = γcTAy′− γcT r, γcTx =
γcTAy − γcT r, and γcTAy′ − γcT r < γcTAy − γcT r,
namely, γcTx′ < γcTx. Thus, we get a corollary that the
x′ is the optimal decision vector for ψ, namely, x = x′ =
Ay′− r. However, this corollary contradicts the precondition.
Theorem 1 is established.

Theorem 2: The encrypted minimum word transportation
cost ξ is γ times of the minimum word transportation cost β.

Proof: According to Theorem 1, the optimal decision vec-
tor x and y meet the mathematical relationship x = Ay− r.
Therefore, we can get the final semantic difference value ξ =
π − δ = γcTAy − γcT r = γ

(
cTAy − cT r

)
= γcTx = γβ.

Therefore, Theorem 2 is established.
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As the ξ is γ times of the β, we define the encrypted
minimum word transportation cost ξ as the measurement.
Therefore, the cloud can calculate and rank the measurements
without learning any sensitive information of documents and
queries in our scheme.

B. Rationality Analysis

In this subsection, we analyze the rationality of our scheme
via complexity analysis.

We still define that d denotes the number of documents
in the dataset, m denotes the number of keywords in a
document and n denotes the number of query words. For
the data users, the most time-consuming operations in our
secure transformation technique are the matrix-matrix op-
erations. The complexity of each step is analyzed as fol-
lows. Encrypting the cost vector c in the word transporta-
tion problem ψ to obtain c′ = (γcTA)T , its complexity
is O

(
dm2n2

)
. Then, encrypting the constraints in the ψ

to get V′ = QVA, W′ = Q(W + Vr), and I′ =
RA, its complexity is O

(
max

{
d(m+ n)2mn, d(mn)3

})
.

Finally, obtaining the constant term δ = γcTr, its complex-
ity is O(dmn). To summarize, the proposed secure trans-
formation technique requires computational complexity of
O
(
max

{
d(m+ n)2mn, d(mn)3

})
at the user side. We adopt

O
(
dm3n3

)
as the computational complexity of the user side

due to m > 2 and n > 2 usually in our scheme.
For the cloud, the time-consuming operations are solving

the RLP problems and dual problems, and the ranking task.
Most of the ready-made optimizers solve both the primal
problems and dual problems at the same time via using
the interior point method. Therefore, the cloud server solves
the RLP problems and dual problems with computation of
O
(
dm3.5n3.5L

)
, where L denotes the input length of the

problem, i.e., the total binary length of the numerical data
specifying the problem instance. The ranking task includes
calculating all of the minimum word transportation cost values
Ξ and ranking these values, resulting in the computational
complexity of O (d+ d log2 d). We can get the following
conclusions and further demonstrate these conclusions with
experimental results in section VIII.

1. It is rational that data users outsource the retrieval task
to the cloud server due to the complexity O

(
dm3n3

)
�

O
(
dm3.5n3.5L

)
.

2. A rational cloud server would perform the ranking task
honestly if the cloud ran the complex calculation hon-
estly for solving RLP problems to obtain the encrypted
minimum word transportation cost due to the complexity
of O

(
dm3.5n3.5L

)
� O (d+ d log2 d) at the cloud side.

C. Security Analysis

In this subsection, we elaborate on the security analysis the
proposed verifiable semantic searching scheme in two aspects,
i.e., verifiability and confidentiality.

1) Verifiability: The verifiability means that the proposed
scheme can verify the correctness of the search results and
proofs returned from the cloud. We adopt the game-based
security definition to prove the verifiability of our scheme.

Definition 4(Verifiability). Let the proposed scheme be verifi-
able and consider the following probabilistic experiment on our
scheme, where A is a stateful adversary: VrfA(ε):

1. The challenger calls KeyGen (1ε) to generate the symmet-
ric secret key K.

2. The adversary A chooses a document dataset F for the
challenger.

3. The challenger calls EncDoc(K,F ) to generate ciphertext
dataset C and calls BuildIndex(F ) to generate forward
indexes I .

4. Given {C, I} and oracle access to BuildWT(q, I, E),
TranKeyGen (1ε), SecTran (Ψ,KT ), the adversary A
generates a set of RLP problems Ωq and the corresponding
constant terms ∆q according to a query q, then outputs a
sequence of documents C ′q and the proofs Λ′q . However,
C ′q 6= Cq , where Cq denotes the real search result of the
query q.

5. The challenger calls Verify(Λ′q) to generate a bit η
6. Finally, this probabilistic experiment outputs the bit η

Our scheme is verifiable if for any probabilistic polynomial-
time adversary A, Pr [VrfA(ε) = 1] ≤ negl(ε).

Therefore, the verifiability of our scheme means that it
prevents the Result Forgeries Attack and Proof Forgeries
Attack. We prove it via theorem 3.

Theorem 3: Our secure semantic searching scheme guar-
antee the verifiability if the probability Pr[Misbehavior]
that any probabilistic polynomial time (PPT) adversary A
successfully forge search result R(C, q) and proofs F(Λ),
Pr[Misbehavior] is negligible.

Proof: According to the definitions of the Result Forg-
eries Attack and Proof Forgeries Attack, we can deduce the
successfully probability of A as follow: Pr[Misbehavior] =
Pr[(R(C, q) 6= T (C, q)) ∩ (V(C, q,F(Λ)) = 0)], where
R(C, q) denotes the search result from the cloud server,
T (C, q) denotes the correct search result, F(Λ) denotes
the proofs returned from the cloud, V(C, q,F(Λ)) = 0
denotes the proofs F(Λ) pass the verification. To prove
Pr[Misbehavior] ≤ negl(ε), we just prove that A has the
successfully probability Pr[Mis] of forging each proof F(λ)
in F(Λ), Pr[Mis] ≤ neg(ε), since negl(ε) =

∑d
i=1 neg(ε)

based on applying union bound for all proofs.
We prove Pr[Mis] ≤ neg(ε) according to duality the-

orem [42]. We first suppose that F(λ) 6= C(λ) and F(λ)
could pass our verification mechanism, namely, F(λ) =
{F(y),F(s),F(t)} meets (9), where C(λ) denotes the real
proof for a specific problem ω. We split the (9) into (10), (11)
and (12), as follows:

v1 = cTF(y)

V′F(y) = W′

I′F(y) ≥ 1 ,

(10)

v2 = W′TF(s) + LTF(t)

V′TF(s) + I′TF(t) = c′

F(t) ≥ 0 ,

(11)

v1 = v2 . (12)
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According to (10) and (11), we can deduce that F(y) and
{F(s),F(t)} are the feasible decision vectors for a RLP
problem ω and its dual problem θ, respectively. We also get
that v1 and v2 are the optimal values of ω and θ, respectively.
Therefore, there is v1 ≥ v2 between v1 and v2 according to
the weak duality lemma [42]. Next, we can deduce that F(y)
and {F(s),F(t)} make the problems obtain the same optimal
values v1 = v2 according to (12). The strong dual theorem [42]
claims that if x∗ and y∗ are feasible for a linear programming
and its dual problem, respectively, and if x∗ and y∗ make the
problems obtain the same optimal values, then x∗ and y∗ are
optimal for their respective problems. Therefore, we can get
a corollary that F(λ) = {F(y),F(s),F(t)} meets the strong
theorem of the LP problem, thus F(λ) = C(λ). Therefore, for
any PPT adversary A, there exits:Pr[Mis] = 0 ≤ neg(ε).

In a word, Pr[Misbehavior] ≤ negl(ε). Therefore, the
proposed scheme is verifiable.

2) Confidentiality: The confidentiality means that the pro-
posed scheme can guarantee that any adversary A cannot any
useful sensitive information about documents F and query
q through the trapdoor (the corresponding RLP problems Ω
and constant terms ∆) and proofs Λ. We demonstrate that our
scheme guarantees the confidentiality defined by Definition 4.
To elaborate the confidentiality of our scheme, we first define
leakage function L(F ) = (Ωq,∆q,Λq) which refers to the
maximum information that is allowed to learn by the adversary
A, where F denotes the documents, Ωq and ∆q denotes
the RLP problems and constant terms which are adaptively
generated from q as the trapdoor, Λq denotes the proofs.

Theorem 4: Our verifiable semantic searching scheme is L-
confidential if the proposed secure transformation technique is
secure.

Proof: We prove it by describing a polynomial-time
simulator S such that for any PPT adversary A, the output
between RealA(ε) and IdealA,S(ε) are computationally in-
distinguishable:
|Pr [RealA(ε) = 1]− Pr [IdealA,S(ε) = 1]| ≤ negl(ε) .
Given the leakage function L(F ) = (Ωq,∆q,Λq), the

simulator S can simulate the search trapdoor (random linear
programming problems and constant terms) and proofs. for
every query q, S simulate and generate randomly the trapdoor
(problems Ω̃ and terms ∆̃) and proofs Λ̃. Our scheme is secure
if any PPT adversary A cannot differentiate the real trapdoor
and proofs from the simulated trapdoor and proofs. Therefore,
we just need to prove that any PPT A is able to deduce each
ψi in Ψ through the ωi in Ω and the corresponding ∆i in
∆, and proof λi in Λi with negligible success probability,
where ∀i ∈ [1, d], d is the number of document in dataset. To
prove it, we formally analyze that our secure transformation
technique guarantees the input/output privacy to original word
transportation problem ψ = (c,V,W, I).

First, we prove that the proposed technique guarantees the
output privacy of ψ, namely, provides the security to the
optimal decision vector x and the real semantic difference
value β of ψ. As the random positive number γ hide the real
semantic difference value β, we only need to prove the security
of x. In our scheme, x is protected by the random invertible
matrix A and random vector r. As x = Ay − r, we can

use y = A−1(x + r) to indicate y. Values of elements in
x belong to [0, 1]. Besides, the vector r whose elements are
uniformly sampled from a numerical interval (0, 2ε], where ε
is security parameter. We prove the privacy of the x via that
xi+ri and r′i are computationally indistinguishable for any A,
where i ∈ [1,mn]. From the view ofA, the best strategy is that
guesses η from 0, 1 with equal probability if xi + ri ∈ (0, 2ε],
and output 1 if xi+ri comes from a specific range (2ε, 2ε + 1].
Therefore, the success probability of the distinguisher A is:

Pr [A (xi + ri) = 1] =
1

2
Pr [0 < xi + ri ≤ 2ε]

+ Pr [2ε < xi + ri ≤ 2ε + 1]

≤ 1

2
+

1

2ε

=
1

2
+ negl(ε) .

Meanwhile, when the input is r′i, A obviously has the success
probability which is:

Pr [A (r′i) = 1] =
1

2
.

Therefore, we can deduce that:

|Pr [A (xi + ri) = 1]− Pr [A (r′i)] = 1| ≤ ne(ε) .

In the end, we can apply union bound to deducing the con-
clusion that any probabilistic polynomial-time A distinguishes
x + r from r′ with negligible success probability:

|Pr [A (x + r) = 1]− Pr [A (r′)] = 1| ≤ neg(ε) =
mn∑
i=1

ne(ε) .

Second, we prove that the proposed technique guarantees
the input privacy of ψ, namely, provides the security to the c,
V, W, I in the word transportation problem ψ. For example,
the W is encrypted into W′ = Q(W + Vr) in our scheme.
We have W′ = QV(x + r) according to Vx = W. We
have proved any A distinguishes x+r from r′ with negligible
success probability. Therefore, we can deduce that QVr′

and QV(x + r) are statistically indistinguishable. Any A
distinguishes QVr′ from QV(x + r) with negligible success
probability:

|Pr [A (QV(x + r)) = 1]− Pr [A (QVr′)] = 1|

≤ neg(·) =
mn∑
i=1

neg(ε) ,

where m and n are the number of keywords in a document and
the query, respectively. The matrixes c, V and I in the ψ is
encrypted into c′, V′ and I′ with random invertible matrixes.
For example, the element values and the structure pattern and
values of c are hidden effectively via multiplying the random
matrix A and random positive number γ as proved [43].

We can deduce the proof λ is unable to reveal information
about original WT problem ψ since A is unable to learn
any sensitive information of ψ = (c,V,W, I) from ω =
(c′,V′,W′, I′).

In a word, we can claim the proposed secure transformation
technique is secure and our verifiable semantic searching
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scheme is L-confidential, since the output between RealA(ε)
and IdealA,S(ε) are computationally indistinguishable.

3) Further discussion for security:
Access Pattern & Search Pattern. Most of the symmetric
searchable encryption schemes resort to the weakened security
guarantee [11] revealing the access pattern and the search
pattern. Informally speaking, the access pattern implies that
the search results are used to derive some information, such
as the identifiers of the documents returned for some specific
trapdoors. The search pattern refers to that the cloud server can
derive whether two arbitrary searches were performed for the
same words. Formal definitions of these two patterns can be
found in [11]. These information leakages could be hidden by
using Oblivious RAMs [44], [45], but it will bring massive
computation and communication burdens. Therefore, liking
prior works, we do not consider these leakage issues in our
scheme. Note that, the proposed secure transformation tech-
nique can encrypt a set of word transportation problems into
two different sets of RLP problems by using one-time secret
keys in two times of query, which reduce information leakage
and increase the difficulty of linking the two identical queries.
Furthermore, we also recognize that the order information of
documents will be leaked unavoidably during the searching
phase in ranked search schemes.
Collusion Attacks. We further discuss two types of collusion
attacks launched by the dishonest cloud server and attackers.

The cloud server may collude with attackers who steal one
user’s secret key K which is used to decrypt the documents
C. This attack exposes the entire database contents. From
another view, we regard this attack as the cloud colluding
with a malicious user. Therefore, multi-user schemes [46],
[47], [48] supporting access control can resist this attack. The
research focus of this paper is on secure verifiable semantic
searching, which is orthogonal to the current research aiming
for providing access control. The proposed scheme can also
integrate with some popular techniques such as Attribute-based
Encryption (ABE), to provide a fine-grained access control
service. For example, we can learn from some schemes [47],
[48] based on ABE, then design the data owner formulating
access policy over an attribute set and encrypting the secret
key K under the policy according to attribute public keys.

The cloud server may collude with attackers who mali-
ciously delete or tamper with the C. This attack is similar
to the attack in a security model in which the cloud server
is malicious. Our scheme supports verification for the search
results returned from the dishonest cloud server, but is unable
to provide integrity verification for documents retrieved. The
main challenge is that our flexible semantic searching scheme
should not like other verifiable schemes in which the data
owner predicts the fixed search results in advance. We left
this problem to be addressed in future works.

VIII. EXPERIMENTS

In this section, we conduct empirical experiments to present
the search accuracy and performance of the proposed scheme.

Table II
STATISTICS OF THE ROBUST04 AND CLUEWEB-09-CAT-B

Robust04 Clueweb-09-Cat-B
Document Count 528,155 50,220,423
Document Mean Length 318 981
Query Count 250 150
Title Topic Mean Length 3 3
Desc Topic Mean Length 16 10

A. Experimental Settings

In this subsection, we present the experimental settings
that include the experimental environment, datasets, evaluation
measures, and baselines.

1) Experimental Environment: The overall experiments ran
on the computer with the following parameters: Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz with 32 GB of RAM.
We developed our scheme and other schemes with the Java.

2) Datasets: To evaluate the accuracy, we conducted exper-
iments on two TREC collections, i.e., Robust04 and ClueWeb-
09-Cat-B. The statistics of the collections are provided in
Table II. Robust04 is a news dataset. ClueWeb-09-Cat-B is a
large Web collection, which is filtered to the set of documents
with spam scores in the 60th percentile. The topics in both Ro-
bust04 and ClueWeb-09-Cat-B are chosen from TREC Tracks.
Each topic contains different lengths of queries, namely, short-
text title (Title Topic) and long-text description (Desc Topic).
Here the Robust04-Title, Robust04-Desc, ClueWeb-Title, and
ClueWeb-Desc mean that the title or description of the topics
are used as query. The relevant judgment files are contained in
both collections, presenting the relevance assessments among
topics and documents, which is a benefit compared with other
datasets used in other schemes.

3) Evaluation Measures: The precision and normalized
discounted cumulative gain (NDCG) as evaluation measures
used in our experiments. We evaluate the accuracy of schemes
via comparing the top-k ranked documents using precision at
rank 20 (P @20) and normalized discounted cumulative gain
at rank 20 (NDCG @20).

The precision P @k is defined to measure the accuracy of
a set of relevant documents from a given cutoff rank (top-k)
retrieved documents, which is defined as follows:

P@k =
|Frelevant ∩ Fretrieved|
|Fretrieved| = k

, (13)

where Fretrieved represents the top-k retrieved documents
and Frelevant represents the relevant documents of the query,
|Fretrieved| denotes the number of Fretrieved, |Frelevant ∩
Fretrieved| denotes the number of really relevant documents
in Fretrieved.

The normalized discounted cumulative gain (NDCG) con-
siders the ranking orders and relevance scores of retrieval
results. The NDCG is accomplished by dividing the query’s
discounted cumulative gain (DCG) with the ideal DCG
(IDCG). As a result of top-k retrieved documents, NDCG @k
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Table III
ACCURACY COMPARISON OF DIFFERENT SECURE SEMANTIC SEARCHING SCHEMES

Robust04 ClueWeb-09-Cat-B

Robust04-Title Robust04-Desc ClueWeb-Title ClueWeb-Desc
P@20 NDCG@20 P@20 NDCG@20 P@20 NDCG@20 P@20 NDCG@20

SSERS [3] 0.052 0.058 0.027 0.029 0.049 0.046 0.057 0.070
SSSMIM-Single [6] 0.128 0.142 0.025 0.023 0.041 0.046 0.028 0.041
SSSMIM-Multi [6] 0.123 0.134 0.028 0.030 0.043 0.049 0.032 0.046
CKSER-1 [8] 0.051 0.117 0.032 0.086 0.049 0.077 0.026 0.081
CKSER-2 [8] 0.050 0.092 0.031 0.083 0.033 0.076 0.019 0.053
VKSS [2] 0.049 0.087 0.030 0.068 0.018 0.019 0.022 0.024
SSSW-1 [9] 0.107 0.192 0.070 0.128 0.060 0.086 0.027 0.060
SSSW-2 [9] 0.106 0.186 0.067 0.122 0.037 0.082 0.021 0.054
Ours 0.148 0.271 0.136 0.255 0.061 0.103 0.041 0.102

is computed as follows:

NDCG @k = DCG@k
IDCG@k

DCG @k =
∑|real|

i=1
reli

log2(i+1)

IDCG @k =
∑|ideal|

j=1
relj

log2(j+1)

, (14)

where DCG @k indicates the truth accumulated from the real
ranking permutation at a particular rank position k, IDCG @k
represents the ideal DCG at k. reli and relj denote relevance
assessments between the query and documents, these relevance
assessments can be got from relevant judgment file in our
datasets. |real| represents the top-k documents in the result
of real ranking order for a query, |ideal| represents the top-k
documents in the result of ideal ranking order.

4) Baselines: Secure synonym extension ranked searching
scheme (SSERS): SSERS is a semantic searching scheme
extending the query words from synonym thesaurus. We
implemented the SSERS proposed in [3].

Secure semantic searching based mutual information
model (SSSMIM): SSSMIM is a ciphertext extension scheme,
which extends the query words from the mutual informa-
tion model. We implemented the single-keyword search-
ing (SSSMIM-Single) proposed in [6]. We also extended it
to a multi-keyword searching scheme (SSSMIM-Multi).

Central keyword semantic extension ranked search-
ing (CKSER): CKSER is a secure semantic searching scheme
based concept hierarchy. CKSER selects a central query word
and extends it to get semantically related words from WordNet.
We implemented CKSER-1 and CKSER-2 proposed in [8].

Verifiable Keyword-based Semantic Searching (VKSS):
VKSS extends the query words according to WordNet and
searches the words on a symbol-based trie index for supporting
verifiability. We implemented the VKSS proposed in [2].

Secure searching scheme based on word2vec (SSSW):
SSSW is a secure searching scheme that uses the word vectors
trained on Word2vec. We implemented both SSSW-1 and
SSSW-2 proposed in [9].

B. Performance Evaluation of Accuracy

In this subsection, we compare the proposed scheme with
other secure semantic searching schemes over the two bench-

mark datasets and analyze the effectiveness of different word
embeddings on our scheme.

We used title topics and description topics as the queries
in our experiments. We did pre-process as follows: both
documents and query words were white-space tokenized, low-
ercased, and removed the stopword. We adopted a re-ranking
strategy for efficient computation. We used Indri to perform
initial retrievals for obtaining the top 1, 000 ranked documents
of each query. We applied schemes to re-rank these documents
and used the results of re-ranked to evaluate accuracy.

1) Compared with baselines: The experiments results show
that the accuracy of our proposed scheme is better than that
of other schemes in terms of all the evaluation measures on
both Robust04 and ClueWeb-09-Cat-B dataset, as illustrated
in Table III. Taking the Robust04 dataset as an example, the
relative improvement of our scheme over the second-highest
ones in other schemes are about 15.62%, 41.14%, 94.28%,
and 99.21% when using Robust04-Title and Robust04-Desc as
queries under P @20 and NDCG @20. The results demonstrate
the effectiveness of our secure verifiable semantic searching
scheme based on word transportation optimal matching.

Overall, the SSERS scheme is inferior to other schemes ex-
cept using description topics as queries search on the Clueweb-
09-Cat-B. The accuracy of SSSMIM schemes when using title
topics as queries on both datasets is higher than the case when
using description topics. As for schemes based on concept
hierarchy, CKSER-1, CKSER-2, and VKSS schemes usually
are not competitive to other schemes. In particular, VKSS
is inferior to CKSER-1 and CKSER-2. The reason is that
CKSER-1 and CKSER-2 schemes consider the grammatical
relationship among query keywords and introduce a word
weighting algorithm to show the importance of the distinction
among them. From Table IV, we can see that CKSER-2 is
inferior to CKSER-1 under different evaluation measures on
both datasets, which also be observed between SSSW-1 and
SSSW-2. This finding is not surprising since the CKSER-2
and SSSW-2 adopt enhanced Secknn algorithm introducing
more random numbers, leading to limited accuracy. We take
a look at the SSSW-1 and SSSW-2 schemes using word
embeddings and the Secknn algorithm to build secure indexes.
Overall, we can see that the SSSW schemes obtain very limited
improvement compared with query expansion schemes. The
results demonstrate that using a compact vector representation
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Table IV
ACCURACY COMPARISON OF OUR SCHEME USING DIFFERENT

WORD EMBEDDINDS OVER ROBUST04

Robust04-Title Robust04-Desc

P@20 NDCG@20 P@20 NDCG@20
Ours-GloVe100 0.137 0.239 0.126 0.244
Ours-GloVe200 0.146 0.259 0.127 0.254
Ours-GloVe300 0.147 0.264 0.128 0.252
Ours-Word2vec300 0.145 0.254 0.122 0.176
Ours-Fasttext300 0.148 0.271 0.136 0.255

of documents/queries may damage the semantic information
of word embeddings.

We can see that the accuracy of other schemes using the
title topics as queries is usually larger than that using the
description topics across different datasets, which is con-
sistent with the previous findings in plaintext information
retrieval [49]. A reason is that the description topics are usually
one or two sentences containing about 16 words so that these
semantic searching schemes are challenging to analyze the
semantic relationship among the query words. For example,
the SSSMIM-Single, CKSER-1 and CKSER-2 schemes are
facing the challenge to select an accurate central keyword from
a long-text description topic. The accuracy of the proposed
scheme using the description topics is still higher than that of
other schemes. A reason is that the word transportation optimal
matching is beneficial to analyze the semantic relationship
between the words and the importance of the distinction
among words in long-text queries.

2) Effect of Word embeddings: As word embedding is an
essential component in our scheme, we used two groups of
word embeddings to conduct experiments for studying the
effect of word embeddings on our scheme. Table IV lists
the experimental results of our scheme on Robust04 dataset.
In the first experiment, we used different word embeddings
with 100, 200, and 300 dimensions trained by GloVe over
same corpuses, namely, GloVe100, GloVe200, GloVe300.
From Table IV, we can see that the proposed scheme using
word embedding with 300 dimensions usually obtains the
best accuracy except under NDCG @20 using the description
topics. The result of the second experiment demonstrates that
the higher dimensionality may help our scheme capture the
accurate semantic information. In the second experiment, we
used two types of word embeddings with 300 dimensions
trained by Word2vec and Fasttext over same corpus, namely,
Word2vec300 and Fasttext300. We can see that our scheme
gets higher accuracy when using the word embeddings trained
by Fasttext compared with using Word2vec300.

C. Performance Evaluation of Time Cost

In this subsection, we present the performance evaluation
of the proposed secure verifiable semantic searching scheme.

We report the experimental results of our scheme over the
Robust04 dataset using title topics as queries due to limited
space. The performance evaluation of time cost at the owner,
the users, and the cloud server in our scheme is as follows:

The data owner is the initiator who initializes the secure
searching scheme. Not like in other schemes, the data owner
in our scheme does not need to perform massive cryptographic
operations, such as order-preserving encryption and homomor-
phic encryption. For the owner, the main steps including (1)
generating symmetrical encryption secret key with tO Key;
(2) encrypting documents with tO Enc; (3) building forward
indexes with tO Index. We define that the total time of a user is
tOwner = tO Key + tO Enc + tO Index. From Table V, we can
see that it takes the data owner tOwner = 6.289s to initialize
the proposed secure verifiable semantic searching scheme.

The data users are the searching requesters that send the
trapdoor of a query for acquiring top-k related documents. In
our scheme, data users need to perform the main steps includ-
ing (1) building word transportation problems with tU WTP ;
(2) generating the one-time secret key with tU Key; (3) trans-
forming the WT problems with tU Tran. We define that the
total time of a user is tUser = tU WTP + tU Key + tU Tran.
From Table V, we can see that the total time of generating
the trapdoor in our scheme is tU Trapdoor = tUser = 1.106s.
It is acceptable in many real-world scenarios in which the
users want to search for essential materials with high accuracy.
In addition, once receiving the proofs and search results,
the users need to spend tU V erify = 0.033s using the pro-
posed verification mechanism to check the proofs and spend
tU Dec = 0.005s decrypting the top-k related documents.

The cloud server is an intermediate service provider that
performs the retrieval process. In our scheme, the cloud
needs to perform the main steps including (1) performing
optimal matching on ciphertext and generating proofs in the
matching process with tC Match; (2) calculating and ranking
the measurements with tC Rank. We define that tCloud =
tC Match + tC Rank denotes the total time of the cloud. From
Table V, the cloud in our scheme needs tCloud = 14.036s to
perform the retrieval process. At first glance, such time may
seem a little long for ordinary users. However, It is worth
spending more time to get higher search accuracy for the
applications in practical scenarios, such as secure searching
for medical and financial information. In addition, the cloud
server providers usually have enormous computing resources
to reduce retrieval time in the real world.

According to the experimental results, we further demon-
strate the Rationality Analysis in section VII. We define that
tOutsource = tU Key + tU Tran denotes the time-consuming
for outsourcing the retrieval tasks to the cloud,ρ = tC Match

tOutsource

denotes the savings of the computational costs when the user
outsources retrieval tasks to the cloud. We obtain ρ = 93.546
from the experimental results in Table V. It demonstrates the
rationality that data users want to outsource the retrieval task to
the cloud server. We define µ = 100tC Match

tC Rank
% to denote the

possibility of the cloud honestly performs the ranking task.
We can obtain µ = 350800% from the experimental results in
Table V. It demonstrates a rational cloud performs the ranking
task honestly if he/she honestly solved the RLP problems.

D. Performance Comparisons with VKSS
In this subsection, we present performance comparisons

between the proposed scheme and the VKSS scheme.
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Table V
TIME COST STATISTICS OF OUR SCHEME

tO Key tO Enc tO Index tU WTP tU Key tU Tran tU V erify tU Dec tC Match tC Rank

Ours 0.001s 0.335s 5.953s 0.956s 0.008s 0.142s 0.033s 0.005s 14.032s 0.004s

Table VI
PERFORMANCE COMPARISONS BETWEEN OUR SCHEME AND VKSS

Time Cost tO Pre tO BuildIndex tU WordTree tU Trapdoor tU V erify tU Rank tC Match tC Rank

VKSS 4.879s 17.778s 614.312s 0.034s 0.011s 0.035s 1.416ms \
Ours 4.879s 1.074s \ 1.106s 0.033s \ 14.032s 0.004s

Accuracy Robust04-Title Robust04-Desc ClueWeb-Title ClueWeb-Desc
P@20 NDCG@20 P@20 NDCG@20 P@20 NDCG@20 P@20 NDCG@20

VKSS 0.049 0.087 0.030 0.068 0.018 0.019 0.022 0.024
Ours 0.148 0.271 0.136 0.255 0.061 0.103 0.041 0.102
Growth Rate 202% 211% 353% 275% 238% 442% 86% 325%

We conducted extensive experiments to evaluate the per-
formance of the time cost and accuracy between our scheme
and the VKSS scheme which is the only one supports secure
verifiable semantic searching in prior works found. We report
the results of time cost experiments over the Robust04 dataset
using title topics as queries due to limited space. We do not
consider the time cost of encrypting documents and decrypting
documents since the time cost is the same in both schemes.
Table VI lists the results of comparison experiments.

From the performance evaluation of the time cost, we
can see that the owner and users in our scheme can ease
the computational burden by paying the time cost in cloud
compared with the VKSS. Specifically, the owner in our
scheme spends tO Pre = 4.879s and tO BuildIndex =
1.074s preprocessing documents and building the forward
indexes when generating the indexes for the documents, where
tO Pre + tO BuildIndex = tO Index. However, the owner in
VKSS spends much time tO BuildIndex = 17.778s on building
the trie index since the owner needs to forecast the results
from predefined document keywords for verifiable searching.
Moreover, the users in VKSS take less time than our scheme
to generate a trapdoor with tU Trapdoor, but the users need
to spend 614.312s for generating the word similarity tree to
expand query words from document keywords as the query.
Although part of the work constructing the word similarity
tree can be performed in an off-line way, it is unfriendly to
the resource-constrained users. In other words, the owner and
users in VKSS need to perform burdensome tasks to realize
secure verifiable semantic searching. While in our scheme, the
owner does not need to forecast the results since the verifiable
searching can be realized by using the intermediate data pro-
duced in the optimal matching process; and the users build the
encrypted word transportation problems and outsource them
to cloud for secure semantic searching rather than performing
query expansion on plaintext. Moreover, after receiving the
proofs and search results, the users in VKSS spend less time
on verifying the correctness of results than our scheme but
need to spend additional tU Rank = 0.035s on calculating
the relevance scores between the query and documents and

ranking the scores for getting the top-k related documents. The
time cost in the cloud in VKSS is small, which is benefit from
the efficiency of the trie index. Another reason is that VKSS
is unable to support verifying the ranked results return from
the cloud. To obtain high accuracy in our scheme, the optimal
matching on ciphertext is performed and the documents are
ranked in the cloud.

As for performance evaluation of accuracy, the accuracy
of our scheme is much higher than that of VKSS on both
Robust04 and ClueWeb-09-Cat-B dataset. Taking the Ro-
bust04 dataset as an example, the relative improvements of our
scheme over the VKSS scheme under NDCG @20 are about
211% and 275% using title and description topics, respectively.
Overall, our scheme spends more time on performing match
in the cloud to obtain much more accuracy improvement than
VKSS. It is worth spending more time to get higher search
accuracy for the applications in practical scenarios. Take the
medical profile as an example, a correct personal medical
profile of a patient is essential and useful to help the doctor
make a precise disease diagnosis and health evaluation.

In summary, the proposed scheme outsources the complex
computational of performing proof generation task and se-
mantic matching task to the cloud. Therefore, our scheme is
more in line with the outsourcing computation characteristics
of the cloud computing paradigm. The main reason why our
scheme spends more time in the cloud is that the computation
of optimal matching on ciphertext is related to the size of
linear programming problem. Therefore, in the future, we plan
to design other schemes to reduce the time cost of optimal
matching on ciphertext according to this finding.

IX. CONCLUSIONS

We propose a secure verifiable semantic searching scheme
that treats matching between queries and documents as a
word transportation optimal matching task. Therefore, we
investigate the fundamental theorems of linear programming
(LP) to design the word transportation (WT) problem and a
result verification mechanism. We formulate the WT problem
to calculate the minimum word transportation cost (MWTC)
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as the similarity metric between queries and documents, and
further propose a secure transformation technique to trans-
form WT problems into random LP problems. Therefore, our
scheme is simple to deploy in practice as any ready-made
optimizer can solve the RLP problems to obtain the encrypted
MWTC without learning sensitive information in the WT
problems. Meanwhile, we believe that the proposed secure
transformation technique can be used to design other privacy-
preserving linear programming applications. We bridge the
semantic-verifiable searching gap by observing an insight that
using the intermediate data produced in the optimal matching
process to verify the correctness of search results. Specifically,
we investigate the duality theorem of LP and derive a set of
necessary and sufficient conditions that the intermediate data
must meet. The experimental results on two TREC collections
show that our scheme has higher accuracy than other schemes.
In the future, we plan to research on applying the principles
of secure semantic searching to design secure cross-language
searching schemes.
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