
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

1

A New Service Mechanism for Profit
Optimizations of a Cloud Provider and Its Users
Chubo Liu, Kenli Li, Senior Member, IEEE, Keqin Li, Fellow, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—In this paper, we try to design a service mechanism for profit optimizations of both a cloud provider and its multiple users. We
consider the problem from a game theoretic perspective and characterize the relationship between the cloud provider and its multiple
users as a Stackelberg game, in which the strategies of all users are subject to that of the cloud provider. The cloud provider tries
to select and provision appropriate servers and configure a proper request allocation strategy to reduce energy cost while satisfying
its cloud users at the same time. We approximate its servers selection space by adding a controlling parameter and configure an
optimal request allocation strategy. For each user, we design a utility function which combines the net profit with time efficiency and
try to maximize its value under the strategy of the cloud provider. We formulate the competitions among all users as a generalized
Nash equilibrium problem (GNEP). We solve the problem by employing variational inequality (VI) theory and prove that there exists a
generalized Nash equilibrium solution set for the formulated GNEP. Finally, we propose an iterative algorithm (IA), which characterizes
the whole process of our proposed service mechanism. We conduct some numerical calculations to verify our theoretical analyses.
The experimental results show that our IA algorithm can benefit both of a cloud provider and its multiple users by configuring proper
strategies.

Index Terms—Cloud computing, Generalized Nash equilibrium, Non-cooperative game theory, Profit optimization, Resource allocation,
Variational inequality theory.

F

1 INTRODUCTION

C Loud computing is an increasingly popular paradig-
m of offering subscription-oriented services to en-

terprises and consumers [1]. Usually, the provided ser-
vices refer to Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS),
which are all made available to the general public in
a pay-as-you-go manner [2], [3]. To support various
services, more and more cloud centers are equipped
with thousands of computing nodes, which results in
tremendous energy cost [4]. It is reported that about 50%
management budget of Amazon′s data center is used
for powering and colling the physical servers [5]. There
are also researchers who have studied the cost of data
centers and concluded that around 40% of the amortized
cost of a data center falls into power related categories
[6]. Hence, it is important to reduce energy cost for
improving the profit of a cloud provider. However, it can
often be seen that there are many under-utilized servers
in cloud centers, or on the contrary, cloud providers
provide less processing capacity and thus dissatisfy their
users for poor service quality. Therefore, it is important
for a cloud provider to select appropriate servers to

• Chubo Liu, Kenli Li, and Keqin Li are with the College of Information Sci-
ence and Engineering, Hunan University, and National Supercomputing
Center in Changsha, Hunan, China, 410082.
E-mail: liuchubo@hnu.edu.cn, lkl@hnu.edu.cn, lik@newpaltz.edu.

• Keqin Li is also with the Department of Computer Science, State Univer-
sity of New York, New Paltz, New York 12561, USA.

• Rajkumar Buyya is with the Department of Computing and Information
Systems, The University of Melbourne, Parkville, VIC 3053, Australia.
Email: rbuyya@unimelb.edu.au.

provide services, such that it reduces cost as much as
possible while satisfying its users at the same time.

For a cloud provider, the income (i.e., the revenue)
is the service charge to the aggregated requests from
all cloud users [7]. When the per request charge is
determined, servers selection and request allocation s-
trategy are two significant factors that should be taken
into account. The reason behind lies in that both of
them are not just for the profit of a cloud provider,
but for the appeals to more cloud users in the market
to use cloud service and thus also impact the profit.
Specifically, if the provided computing capacity is large
enough (i.e., many servers are under-utilized), this will
result in tremendous amount of energy waste with huge
cost and thus reduces the profit of the cloud provider.
On the other hand, if the cloud provider provides less
computing capacity or improperly configures the request
allocation strategy, this will lead to low service quality
(e.g, long task response time) and thus dissatisfies its
cloud users or potential cloud users in the market.

A rational user will choose a strategy to use the
service that maximizes his/her own net reward, i.e., the
utility obtained by choosing the cloud service minus the
payment [8]. In addition, the utility of a user is not only
determined by the net profit of his/her requests (i.e.,
how much benefit the user can receive by finishing the
configured tasks), but also closely related to the urgency
of the tasks (i.e., how quickly they can be finished).
The same amount of tasks are able to generate more
utility for a cloud user if they can be completed within a
shorter period of time in the cloud center [8]. However,
considering from energy saving and economic reasons,
it is irrational for a cloud provider to provide enough



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

2

computing resources to complete all requests in a short
period of time. Therefore, multiple cloud users have to
configure the amount of requests in different time slots.
Since the requests from users are submitted randomly,
in our paper, we approximately characterize the request
arrivals as a Poisson process [9]. Since the payment and
time efficiency of each of the cloud users are affected
by the decisions of others, it is natural to analyze the
behaviors of these users as strategic games [10].

In this paper, we try to design a new service mechanis-
m for profit optimizations of both a cloud provider and
its multiple users. We consider the problem from a game
theoretic perspective and characterize the relationship
between the cloud provider and its users as a Stackelberg
game, in which the strategies of all users are subject to
that of the cloud provider. In our mechanism, the cloud
provider tries to select appropriate servers and configure
a proper request allocation strategy to reduce energy cost
while satisfying its users at the same time.

The main contributions of this paper are listed as
follows.

• We characterize the relationship between the cloud
provider and its users as a Stackelberg game, and
try to optimize the profits of both a cloud provider
and its users at the same time.

• We formulate the competitions among all users as a
generalized Nash equilibrium problem (GNEP), and
prove that there exists a generalized Nash equilib-
rium solution set for the formulated GNEP.

• We solve the GNEP by employing varational in-
equality (VI) theory and propose an iterative algo-
rithm (IA) to characterize the whole process of our
proposed service mechanism.

Experimental results show that our IA algorithm can
benefit both of the cloud provider and its multiple users
by configuring proper strategies.

The rest of the paper is organized as follows. Section 2
presents the related works. Section 3 describes the mod-
els of the system and presents the problem to be solved.
Section 4 formulates the problem into a Stackelberg
game, which consists of a leader and a set of followers.
We analyze the strategies for both of the leader and the
followers. Many analyses and several subalgorithms are
presented in this section. Section 5 is developed to verify
our theoretical analysis and show the effectiveness of our
proposed algorithm. We conclude the paper with future
work in Section 6.

2 RELATED WORK

Some works have been done for profit optimizations of
cloud centers in the literature [7], [12], [11], [13]. The
methods are presented in Table 1. In [12], Lampe et al.
proposed a heuristic method to tackle profit maximiza-
tion for a cloud provider. They focus on auction profit
maximization in the context of multiple virtual ma-
chines (VMs). In [13], Goudarzi and Pedram developed
a heuristic to deal with profit maximization in cloud

computing system with service level agreements. They
try to reduce cost by powering off appropriate servers,
i.e., selecting appropriate servers to provide services.
More recently, Cao et al. [7] proposed an optimal method
for energy saving under continuous dynamic voltage
frequency scaling (DVFS) environment. Specifically, they
try to configure appropriate speed for each server to
save energy. However, as shown in Table 1, all these
methods mainly consider from the perspective of the
cloud provider.

To our knowledge, hardly any previous works inves-
tigate multiple users′ profit optimizations, let alone opti-
mizing the profits of a cloud provider and its users at the
same time. In this work, we first try to optimize multiple
users′ profits. Since multiple cloud users compete for
using the resources of a cloud provider, and the utility
of each user is affected by the decisions (service request
strategies) of other users, it is natural to analyze the
behaviors of such systems as strategic games [14].

Game theory provides a framework to explain and ad-
dress the interactive decision situations where the goals
and preferences of the participating users are in conflict
[15], [16]. It is a formal study of conflicts and cooperation
among multiple users [17] and a powerful tool for the
design and control of multiagent systems [18]. Due to
its advantages, there has been a growing interest in
adopting cooperative and non-cooperative game theoret-
ic approaches to various areas such as scheduling [19],
communications [20], and evolution of cooperation [21].
A more general framework suitable for investigating and
solving various equilibrium models, even when game
theory may fail, is the variational inequality (VI) theory
which is applicable to a very general class of problems in
nonlinear analysis [22]. For more works on game theory,
the reader is referred to [23], [24], [25].

As presented in Section 1, energy cost is one of the
most important factors that should be taken into account
for a cloud provider to increase its profit. Many works
have also been done on energy saving in the literature
[26], [27], [28], [29]. In [28], Mei et al. proposed an
energy-aware scheduling algorithm for sporadic tasks.
The authors try to reduce energy consumption by using
dynamic voltage frequency scaling (DVFS) technique. In
[29], based on DVFS technique and the concept of slack
sharing among processors, the authors also proposed
two novel energy-aware scheduling algorithms. Similar
works can also be found in [26], [27].

However, according to [30], even an energy efficient
server still consumes about half of its full power when
doing no work. Therefore, powering off idle servers
when possible is regarded as an effective way to reduce
energy cost, especially during off-peak traffic hours for
a relative long period of time [31]. In this work, we try
to power off some idle servers (i.e., select appropriate
servers to provide services) to reduce energy cost for the
cloud provider. In addition, we configure server selection
strategy for multiple time slots, i.e., for a relative long
period of time.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

3

TABLE 1: Comparison between IA and the state-of-the-art schemes

Schemes Perspective(s) Energy saving technique Characteristic
[7] Cloud provider Continuous DVFS Optimal
[11] Cloud provider Powering off servers Heuristic
[12] Cloud provider VM consolidation Heuristic
[13] Cloud provider Powering off servers Heuristic
IA Cloud provider and users Powering off servers Heuristic

3 SYSTEM MODEL AND PROBLEM FORMULA-
TION

In this section, we first present our system models and
then formulate the profit optimization problem. We con-
sider the context of a cloud provider with multiple cloud
users. The cloud provider is assumed to be equipped
with m heterogeneous multicore servers. We denote the
set of servers as M = {1, 2, . . . ,m}. Each server j
(j ∈ M) consists of cj cores and similar to [9], it is
modeled by an M/M/c queueing system. We denote the
set of cloud users as N = {1, 2, . . . , n}. The requests from
each of the cloud users are assumed to follow a Poisson
process.

We summarize all the notations used in this section
in the notation table (see Section 1 of the supplementary
material).

3.1 Architecture Model
In this subsection, we model the architecture of our pro-
posed service mechanism, in which the cloud provider
can select an appropriate servers subset S from M (i.e.,
S ⊆ M) to provide services for the H future time slots,
and configure a proper strategy pS =

(
p1S , . . . ,p

H
S
)

with
phS =

(
phj
)
j∈S (h ∈ H) to allocate the aggregated requests

to the selected servers, such that the average response
time over all cloud users (see Eq. (14)) is minimized,
while its multiple users can make an appropriate request
decision according to the selected servers and allocation
strategy. As shown in Fig. 1, each user i (i ∈ N ) is
equipped with a utility function (Ui) and a request
configuration strategy (λi), i.e., the request strategy over
H future time slots. All requests enter a queue to be
processed by the cloud center. Let λΣ be the aggregated
request vector, then we have λΣ =

∑
i∈N λi. The cloud

provider tries to select an appropriate servers subset
S, configure an appropriate allocation strategy pS , and
publishes some information (e.g., per request charge
r, server subset S, and the corresponding allocation
strategy pS , current aggregated requests λΣ) on the
information exchange model. When multiple users try
to configure appropriate request strategies, they first get
information from the exchange module, then compute
proper request strategies such that their own utilities are
maximized and send the newly strategies to the cloud
provider.

The computation and communication process can be
automatically done by a software. If a user wants to

have a look at the aggregated requests λΣ in the process,
he/she just needs to press a button of the software to ask
for the cloud provider to send the newly updated value
of λΣ. Take one day as an example, i.e., H = 24 (from
20:00 to 20:00 of the next day), with one hour a time
slot. The cloud provider sets 20:00 to ensure the users
who use its service and compute their corresponding
strategies over the next 24 hours. That is to say, each
user has two steps to make cloud service reservation.
Firstly, before 20:00, the users who want to use the
cloud service register their informations. Secondly, the
cloud provider collects the informations of its registered
users and ensures the agreements at 20:00. If a user
registers after 20:00, then he/she tries to make the next
negotiation, i.e., waits for the next round.

μ1

μ3

μm

Server

selection

Request

allocation

μ2

Scheduler

Cloud Provider

Information

Exchange

λ∑

Net Profit: π

Server Subset: S

Cloud User 1

Utility: U1

Reservation Value: v1

λ1

Cloud User 2

Utility: U2

Reservation Value: v2

λ2

Cloud User n

Utility: Un

Reservation Value: vn

λn
Allocation Probability: pS

p1

p3

Fig. 1: Architecture model

3.2 Energy Cost Model

We consider energy consumption model in the context
of our proposed heterogeneous multicore server system.
Energy consumption and circuit delay in complementary
metal-oxide semiconductor (CMOS) can be accurately
modeled by simple equations, even for complex mi-
croprocessor circuits [9]. The energy consumption of a
CMOS-based processor is defined as the summation of
capacitive, short-circuit, and leakage energy [32]. How-
ever, the dominant component in a well-designed circuit
is capacitive energy E, which is approximately defined
as

E = dCV 2f, (1)

where d is the number of switches per clock cycle, C is
the total capacitance load, V is the supply voltage, and f
is the frequency. The processing capacity of a processor
µ is usually linearly proportional to the clock frequency,



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

4

i.e., µ ∝ f . With reference to [9], [33], we also obtain
f ∝ V ϕ with 0 < ϕ ≤ 1, which implies that V ∝ f1/ϕ.
Therefore, we know that the energy consumption is E ∝
fa and E ∝ µa, where a = 1+2/ϕ ≥ 3. In this paper, we
assume that

E = ξµa, (2)

where ξ is a corresponding factor. Denote χ as the cost of
one unit of energy and let Ej be the energy consumption
of server j (j ∈ M) in a unit of time. According to
equation (2), we obtain

Ej = χcjξjµ
aj

j , (3)

where µj is the processing rate of one core of server
j, ξj and aj are the corresponding energy consumption
factors.

3.3 Request Profile Model
We consider a user request model similar to [34], [35],
where the user i′s (i ∈ N ) request profile over the H
future time slots is formulated as

λi =
(
λ1
i , . . . , λ

H
i

)
, (4)

where λh
i (h ∈ H) is the arrival rate of requests from user

i in the hth time slot and it is subject to the constraint 0 ≤
λh
i ≤ Λi, where Λi denotes user i′s maximal requests in a

time slot. The requests from each of the users in different
time slots are assumed to follow a Poisson process. The
individual strategy set of user i can be expressed as

Qi =
{
λi|0 ≤ λh

i ≤ Λi, ∀h ∈ H
}
, (5)

where H = {1, . . . , H} is the set of all H future time
slots.

3.4 Cloud Service Model
The cloud provider is equipped with a request scheduler
and m heterogeneous multicore servers. Each server j
(j ∈ M) consists of cj cores and similar to [9], it is
modeled by an M/M/c queuing system. We assume that
all of the servers differ in their processing capacities and
energy consumptions. The processing capacity of one
core of server j (j ∈ M) is presented by its service
rate µj . Energy consumption factors ξj and aj are also
different among different servers. The cloud provider
only selects a servers subset S (S ⊆ M) to provide
services.

Let phj be the probability that each of the requests is
assigned to server j (j ∈ S) in time slot h (h ∈ H)
and ρhj be the corresponding service utilization. Then
we have ρhj = phj λ

h
Σ

/
(cjµj), where λh

Σ denotes the
aggregated requests from all cloud users in time slot
h, i.e., λh

Σ =
∑n

i=1 λ
h
i . Let πh

k,j be the probability that
there are k service requests (waiting or being proceed)
at server j in time slot h. With reference to [9], we have

πh
k,j =

πh
0,j

(cjρh
j )

k

k! , k < cj ;

πh
0,j

c
cj
j (ρh

j )
k

cj !
, k ≥ cj ,

(6)

where

πh
0,j =

(
cj−1∑
l=0

(
cjρ

h
j

)l
l!

+

(
cjρ

h
j

)cj
cj !

· 1

1− ρhj

)−1

. (7)

The probability of queuing (i.e., the probability that a
newly submitted request must wait due to all cores of
server j are busy) is

Ph
q,j =

∞∑
k=cj

πh
k,j =

πh
cj ,j

1− ρhj
. (8)

The average number of service requests in time slot h
(in waiting or in execution) at server j is

N̄h
j =

∞∑
k=0

kπh
k,j = cjρ

h
j +

ρhj
1− ρhj

Ph
q,j . (9)

Applying Little′s result, we obtain the average response
time at server j as

T̄h
j =

N̄h
j

phj λ
h
Σ

=
1

phj λ
h
Σ

(
cjρ

h
j +

ρhj
1− ρhj

Ph
q,j

)
, (10)

where Ph
q,j represents the probability that the incoming

requests at server j need to wait in queue in time slot h.
In this paper, we assume that all of the selected servers
will likely keep busy, because if not so, some servers
could be removed to reduce mechanical wear and energy
cost. Therefore, Ph

q,j (∀j ∈ S) is assumed to be 1, and we
have

T̄h
j =

1

phj λΣ

(
cjρ

h
j +

ρhj
1− ρhj

)
=

1

µj
+

1

cjµj − phj λ
h
Σ

.

(11)

With a request rate of λh
i (i ∈ N ) in time slot h (h ∈ H),

the average response time of user i on server j (j ∈ S)
is given by

T̄h
ij =

phj λ
h
i

µj
+

phj λ
h
i

cjµj − phj λ
h
Σ

. (12)

We derive the mean response time of user i (i ∈ N ) over
all servers as

T̄h
i =

∑
j∈S

phj T̄
h
ij =

∑
j∈S

((
phj
)2

λh
i

µj
+

(
phj
)2

λh
i

cjµj − phj λ
h
Σ

)
, (13)

and the average response time over all users as

T̄h =
∑
i∈N

(
λh
i

λh
Σ

T̄h
i

)
=
∑
i∈N

λh
i

λh
Σ

∑
j∈S

phj T̄
h
ij


=
∑
i∈N

(
λh
i

)2
λh
Σ

∑
j∈S

((
phj
)2

µj
+

(
phj
)2

cjµj − phj λ
h
Σ

)
. (14)



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

5

3.5 Problem Formulation
Now, let us consider user i′s (i ∈ N ) utility in time
slot h. A rational cloud user will seek a strategy to
maximize its expected net reward by finishing the tasks,
i.e., the benefit obtained by choosing the cloud service
minus its total payment. We denote user i′ net reward
in time slot h by Rh

i , where Rh
i = (b− r)λh

i with b and r
denoting the benefit factor (the reward obtained by one
task request) and the charge factor (the cost by finishing
one task request in cloud computing), respectively. On
the other hand, since a user will be more satisfied with
much faster service, we also take the response time of
the user into account. Note that service time utility will
be deteriorated with the delay of time slots. Hence, in
this paper, we assume that the deteriorating rate of time
utility is δ (δ > 1). Denote the T̂h

i as the time utility of
user i in time slot h. Then we have T̂h

i = δhT̄h
i . More

formally, the utility of user i (i ∈ N ) in time slot h is
defined as

Uh
i

(
λh
i ,λ

h
−i

)
= wiR

h
i − T̂h

i

= wi (b− r)λh
i − δhT̄h

i , (15)

where λh
−i =

(
λh
1 , . . . , λ

h
i−1, λ

h
i , . . . , λ

h
n

)
denotes the vec-

tor of all users′ request profile in time slot h except that
of user i, and wi (wi > 0) is a weight factor, which reflects
the importance of net benefit compared with time utility.
Note that, when the average response time is low, the
users may submit more requests and thus impact the
aggregated requests in cloud center.

We obtain the total utility obtained by user i (i ∈ N )
over all H future time slots as

Ui (λi,λ−i) =
∑
h∈H

Uh
i

(
λh
i ,λ

h
−i

)
=
∑
h∈H

(
wi (b− r)λh

i − δhT̄h
i

)
, (16)

where λ−i = (λ1, . . . ,λi−1,λi+1, . . . ,λn) denotes the
(n− 1) H × 1 vectors of all users′ request profile except
that of user i. In this paper, we assume that each user
i (i ∈ N ) has a reservation value vi. That is to say,
cloud user i will prefer to use the cloud service if
Ui (λi,λ−i) ≥ vi and refuse to use the cloud service
otherwise.

For the cloud provider, its objective is trying to select
an appropriate servers subset S from M and configure
a proper request allocation strategy pS , such that its net
reward, i.e., the charge to all cloud users minus its energy
cost, is maximized. We denote π as the net profit, then
the cloud provider′s problem is to maximize the value
π. That is,

maximize π (S,pS) = r
∑
i∈N

∑
h∈H

λh
i −H

∑
j∈S

Ej , S ⊆M,

s.t. Ui (λi,λ−i) ≥ vi, λi ∈ Qi, ∀i ∈ N ,

phj λ
h
Σ < cjµj , ∀j ∈ S, ∀h ∈ H,∑
j∈S

phj = 1, ∀h ∈ H. (17)

4 GAME FORMULATION AND ANALYSES

Since the multiple users have to compete for using the
computing resources, and their strategies are subject to
that of the cloud provider, we formulate the relationship
between the cloud provider and its multiple users into
a Stackelberg game. For the cloud provider, we try
to approximate its server selection solution space by
using a control parameter and configure an appropriate
request allocation strategy to the selected servers. For
the multiple users, we characterize their competitions
as a non-cooperative game and formulate them into
a generalized Nash equilibrium problem (GNEP). By
employing variational inequality (VI) theory, we analyze
the the formulated GNEP. Then, we propose an iterative
algorithm (IA) to compute appropriate strategies for
both the cloud provider and its multiple users.

4.1 Game Formulation

Game theory studies the problems in which multiple
players try to maximize their utilities or minimize their
disutilities. In this subsection, we characterize the opti-
mization problem presented in Section 3.5 as a Stackel-
berg game, which is a sequential game played between
a Leader and a set of Followers [36]. All of them try to
maximize their own utilities.

In our work, the cloud provider plays the role of the
leader, who tries to select an appropriate servers subset
S from M and configure a proper request allocation
strategy pS to the selected servers, such that it can
appeal user requests as many as possible while its cost
is relatively low. We denote QL as the servers selection
space, then QL can be expressed as

QL = {S|S ⊆ M} . (18)

Each cloud user is regarded as a follower, i.e., the set of
followers is the n cloud users. Notice that when given
S and pS , the workload of each server j (j ∈ S) in time
slot h (h ∈ H) never exceeds its processing capacity, i.e.,
phj λ

h
Σ < cjµj (∀j ∈ S). We denote σ as a relative small

constant and add the constraint λh
Σ ≤ (1− σ)λh

up, where
λh
up = minj∈S

{
cjµj

/
phj
}

. Then the request strategy set
of user i (i ∈ N ) can be expressed as

Q̂i (λ−i) = Qi ∩

{
λi|

n∑
i=1

λh
i ≤ (1− σ)λh

up, ∀h ∈ H

}
.

(19)
Then, the joint strategy set of all followers is given by
Q̂F = Q̂1 × · · · × Q̂n.

A Stackelberg game assumes certain decision power
for both the leader and followers, with the leader pro-
cessing a higher priority. The followers have to make
their decisions subject to the leader’s strategy [37] and
try to maximize their own utilities. Therefore, the profit
maximization problem of the cloud provider can be



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

6

formulated as the following optimization problem (OPT):

maximize π (S,pS) = r
∑
i∈N

∑
h∈H

λh
i −H

∑
j∈S

Ej , S ∈ QL,

s.t. λi ∈ argmax
λ

′
i∈Q̂i(λ−i)

Ui

(
λ

′

i,λ−i

)
, ∀i ∈ N . (20)

Theorem 4.1. Above OPT problem is NP-hard.

Proof: A complete proof of the theorem is given in
the supplementary material.

4.2 Leader’s Strategy Analysis
We now consider the problem from the perspective of
the cloud provider. We try to reduce the servers selection
space by using an approximated one. We also configure
an optimal request allocation strategy for the aggregated
requests.

4.2.1 Solution Space Approximation
To reduce the solution space (QL), we use a parameter
ε to categorize all the elements in QL and reduce some
server subsets, which provide similar processing capac-
ities.

We notice that a server j (j ∈ M) gains net profit
at most Pj in each time slot for the cloud provider,
where Pj = rcjµj − Ej . Therefore, we use Pj to char-
acterize the server j (j ∈ M) during our approxima-
tion process. In this paper, the value Pj (∀j ∈ M)
is assumed to be greater than zero. We denote PT (S)
as the largest possible profit gained by all servers in
S. Then we have PT (S) =

∑
j∈S Pj . Arrange all of

the server subsets S(1),S(2), . . . ,S(|QL|) in QL, such that
PT

(
S(1)

)
≤ PT

(
S(2)

)
≤ · · · ≤ PT

(
S(|QL|)). We try to

reduce some elements inQL to an approximated solution
space Q(ε)

L , such that for each server subset S in QL,
there exists an element S(ε) (S(ε) ∈ Q(ε)

L ) satisfying
PT (S) ≤ (1 + ε)PT

(
S(ε)

)
. The idea is formalized in

Algorithm 1.
Given ε, r,µ,E, and M, where µ = (µj)j∈M and

E = (Ej)j∈M, the algorithm Calcualte Q(ε)
L finds an

approximated solution space Q(ε)
L for QL. The key idea is

trying to reduce solution space by selecting some server
subset representatives and removing similar ones (Steps
7-11). At the beginning, we set Q(ε)

L as {∅}, which only
contains an empty subset (Step 1). Then, for a server
j (j ∈ M), we merge it into each of the subsets in
Q(ε)

L (Steps 3-5) and resort the subsets according to their
largest possible gained profits (Step 6). After resorting,
we try to remove some later elements S(l) (S(l) ∈ QL)
if there exists a previous one S(p) (S(p) ∈ QL) satisfying
PT

(
S(l)

)
≤ (1 + ε)PT

(
S(p)

)
(Steps 7-11). This process is

terminated when all the servers in M are considered.

Theorem 4.2. The time complexity of Algorithm 1 is
Θ
(
mL(ε) logL(ε)

)
, where

L(ε) =
(1 + ε) lnPT (M)

ε
, (21)

Algorithm 1 Calculate Q(ε)
L (ε, r,µ,E,M)

Input: ε, r,µ,E,M.
Output: Q(ε)

L .
1: Initialization: For each server j (j ∈M), calculate Pj .

Set Q(ε)
L = {∅}.

2: for (each server j ∈M) do
3: for (each element S ∈ Q(ε)

L ) do
4: Merge server j into set S, i.e., set S ← S ∪ {j}.
5: end for
6: Sort the elements in Q(ε)

L such that PT

(
S(1)

)
≤

PT

(
S(2)

)
≤ . . . ≤ PT

(
S(|Q

(ε)
L |)
)

.

7: for (i from 1 to
∣∣∣Q(ε)

L

∣∣∣− 1) do
8: if (PT

(
S(i+1)

)
≤ (1 + ε)PT

(
S(i)

)
) then

9: Remove S(i+1) from Q(ε)
L , i.e., set Q(ε)

L ←
Q(ε)

L −
{
S(i+1)

}
.

10: end if
11: end for
12: end for
13: return Q(ε)

L .

with PT (M) =
∑

j∈M (rcjµj − Ej).

Proof: We first derive an upper bound of the length
of set Q(ε)

L . As can be seen from Algorithm 1, after
steps 7-11, two continuous elements S and S ′

(S,S ′ ∈
Q(ε)

L ) satisfy the condition PT

(
S ′
)/

PT (S) > 1 + ε.

That is to say, for any two elements S,S ′ ∈ Q(ε)
L ,

PT

(
S ′
)/

PT (S) > 1 + ε. Therefore, Q(ε)
L contains ele-

ment ∅ and may contain at most other
⌈
log1+εPT (M)

⌉
elements. Thus, the number of elements in set Q(ε)

L is at
most

log(1+ε)PT (M) + 1 =
lnPT (M)

ln (1 + ε)
+ 1

≤ (1 + ε) lnPT (M)

ε
+ 1.

In Algorithm 1, we note that the for loop (Steps 3-5)
requires Θ

(
L(ε)

)
to complete as well as the other for loop

(Steps 7-11). In step 6, it takes at most Θ
(
L(ε) logL(ε)

)
to

sort the elements in set Q(ε)
L . Therefore, the outer for loop

(Steps 2-12) takes time Θ
(
m
(
2L(ε) + L(ε) logL(ε)

))
=

Θ
(
mL(ε) logL(ε)

)
. Thus, the time complexity of Algo-

rithm 1 is Θ
(
m+mL(ε) logL(ε)

)
= Θ

(
mL(ε) logL(ε)

)
.

This completes the proof and the result follows.

4.2.2 Request Distribution Analysis
After a servers subset is determined, the cloud provider
has to consider an appropriate request allocation s-
trategy, such that the average response time over all
users (see Eq. (14)) is minimized and thus satisfies and
appeals more cloud users. Before address the request
allocation strategy, we first show two properties which
are presented in Theorem 4.3 and Corollary 4.4.

Theorem 4.3. Consider a two server system such that µj <
µk (j, k ∈ M), it is optimal to assign a certain amount of



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

7

requests λ (λ < λΣ and λ < µj + µk) to both of the servers.
Namely, the minimum T̃k (xpc) + T̃j ((1− x) pc) occurs at
0 < x < 1, where

T̃l (xpc) =

(
1

λΣ

∑
i∈N

λ2
i

)(
(xpc)

2

µl
+

(xpc)
2

clµl − xpcλΣ

)
,

(22)
l = j, k, and pc = λ/λΣ.

Proof: From (22), we can observe that T̃k (xpc)
and T̃j ((1− x) pc) are convex and thus T̃k (xpc) +
T̃j ((1− x) pc) is a convex function. We try to obtain
the minimum of T̃k (xpc) + T̃j ((1− x) pc) by analyzing
its derivative for all 0 ≤ x ≤ 1. After some algebraic
calculation, we obtain

d

dx

(
T̃k (xpc)

)
=

(
1

λΣ

∑
i∈N

λ2
i

)
2xp2c
µk

+(
1

λΣ

∑
i∈N

λ2
i

)
2xp2cckµk − (x)

2
p3cλΣ

(ckµk − xpcλΣ)
2 ,

and

d

dx

(
T̃j ((1− x) pc)

)
= −

(
1

λΣ

∑
i∈N

λ2
i

)
2 (1− x) p2c

µj
−(

1

λΣ

∑
i∈N

λ2
i

)
2 (1− x) p2ccjµj − (1− x)

2
p3cλΣ

(cjµj − (1− x) pcλΣ)
2 .

Obviously, d
dx

(
T̃k (xpc) + T̃j ((1− x) pc)

)
< 0 at x = 0,

and d
dx

(
T̃k (xpc) + T̃j ((1− x) pc)

)
> 0 at x = 1. Besides,

we can further obtain

d2

dx2

(
T̃k (xpc) + T̃j ((1− x) pc)

)
=

(
1

λΣ

∑
i∈N

λ2
i

)(
2p2c
µk

+
2p2cc

2
kµ

2
k

(ckµk − xpcλΣ)
3

)
+(

1

λΣ

∑
i∈N

λ2
i

)(
2p2c
µj

+
2p2cc

2
jµ

2
j

(cjµj − (1− x) pcλΣ)
3

)
> 0.

Therefore, d
dx

(
T̃k (xpc) + T̃j ((1− x) pc)

)
is strictly in-

creasing over 0 ≤ x ≤ 1 so long as xλ < µk and
(1− x)λ < µj , that is, for all feasible assignments.

Thus, the minimum T̃k (xpc)+ T̃j ((1− x) pc) occurs at
0 < x < 1 and the result follows.

Corollary 4.4. Given a server set S, it is optimal for a cloud
provider to assign jobs to all servers in S.

Proof: We denote TR (pR) as the average response
time of all users when the server set isR (R ⊂ S) and the
request distribution strategy is pR, where pR = (pj)j∈R.
Denote p∗R as an optimal assignment. Let

T̃j (pj) =

(
1

λΣ

∑
i∈N

λ2
i

)(
p2j
µj

+
p2j

cjµj − xpjλΣ

)
,

for all j ∈ R. Then we have

TR (pR) =
∑
j∈R

T̃j (pj).

Assuming that there exist a server k (k ∈ R) and a
server l (l ∈ R̄), where R̄ denotes the supplementary set
of R. Based on Theorem 4.3, we can find that there exists
an x (0 < x < 1) such that

T̃k (xp
∗
k) + T̃l ((1− x) p∗k) < T̃k (p

∗
k) .

Namely,∑
j∈R,j ̸=k

T̃j

(
p∗j
)
+ T̃k (xp

∗
k) + T̃l ((1− x) p∗k) <

∑
j∈R

T̃j

(
p∗j
)
.

Therefore, there exists a probability vector p
′

R∪{l} for
server set R ∪ {l} with p

′

k = xp∗k, p
′

l = (1− x) p∗k, and
p

′

j = p∗j (j ∈ R and j ̸= k), such that

TR∪{l}

(
p

′

R∪{l}

)
< TR (p∗R) .

This process can be terminated when the server set R̄ is
empty. Thus, it is optimal for a cloud provider to assign
requests to all servers for set S, and the result follows.

Next, we focus on the probability distribution for the
minimization of system response time in time slot h
(h ∈ H) (see Eq. (14)). We denote P as the constraint
of probability, i.e.,

P =
∑
j∈S

phj = 1, (23)

and try to minimize T̄h by using the method of Lagrange
multiplier, namely,

∂T̄h

∂phj
= ϕ

∂P

∂phj
= ϕ, (24)

where ϕ is a Lagrange multiplier. That is,

∂T̄h

∂phj
=

(∑
i∈N

(
λh
i

)2
λh
Σ

)(
2phj
µj

+
2phj cjµj −

(
phj
)2
λh
Σ(

cjµj − phj λ
h
Σ

)2
)

= ϕ,

(25)

for all j ∈ S , and
∑

j∈S phj = 1.
Since the second order of T̄h

(
phj
)

is

∂2T̄h

∂
(
phj
)2 =

(∑
i∈N

(
λh
i

)2
λh
Σ

)(
2

µj
+

2c2jµ
2
j(

cjµj − phj λ
h
Σ

)3
)

> 0,

(26)

we can conclude that ∂T̄h

∂ph
j

is an increasing positive

function on phj . Based on above derivations, we propose
an algorithm to calculate pS , which is motivated by [9].

Given ϵ,µ, λh
Σ, and S, our optimal request allocation

algorithm to find pS is given in Algorithm 2. The algo-
rithm uses another subalgorithm Calculate phj , which,
given µj , λ

h
Σ, and ϕ, finds phj satisfies (25). The key ob-

servation is that the left-hand side of (25) is an increasing



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

8

function on phj (see (26)). Therefore, given ϕ, we can find
phj by using the binary search method in certain interval
[lb, ub] (Steps 2-9 in Algorithm 3). We set lb simply as
0. For ub, we may note that the allocated load never
exceed its processing capacity. Therefore, we set ub as
min

{
1, cjµj

/
λh
Σ

}
. The value of ϕ can also be found by

using the binary search method (Steps 2-8 in Algorithm
2). The search interval [lb, ub] for ϕ is determined as
follows. We set lb simply as 0. As for ub, we set an
increment variable inc, which is initialized as a relative
small positive constant and repeatedly doubled (Step
(7)). The value of inc is added to ϕ to increase ϕ until
the sum of phj (j ∈ S) found by Calculate phj is at least 1
(Steps 2-8). Once [lb, ub] is decided, ϕ can be searched by
using binary search (Steps 10-20). After ϕ is determined
(Step 21), phj can be computed (Steps 22-24).

Algorithm 2 Calculate phS(ϵ,µ, λh
Σ,S)

Input: ϵ,µ, λh
Σ,S

Output: phS .
1: Initialization: Let inc be a relative small positive

constant. Set phS ← 0, and ϕ← 0.
2: while (

∑
j∈S

phj < 1) do

3: Set mid← ϕ+ inc, and ϕ← mid.
4: for (each server j ∈ S) do
5: phj ← Calculate phj (ϵ, µj , λ

h
Σ, ϕ).

6: end for
7: Set inc← 2× inc.
8: end while
9: Set lb← 0 and ub← ϕ.

10: while (ub− lb > ϵ) do
11: Set mid← (ub+ lb)/2, and ϕ← mid.
12: for (each server j ∈ S) do
13: phj ← Calculate phj (ϵ, µj , λ

h
Σ, ϕ).

14: if (
∑
j∈S

phj < 1) then

15: Set lb← mid.
16: else
17: Set ub← mid.
18: end if
19: end for
20: end while
21: Set ϕ← (ub+ lb)/2.
22: for (each server j ∈ S) do
23: phj ← Calculate phj (ϵ, µj , λ

h
Σ, ϕ).

24: end for
25: return phS .

By Algorithm 3, we note that the while loop (Steps 2-
9) is a binary search process, which is very efficient and
requires time Θ

(
log
(

1
ϵ min

{
1,

µj

λh
Σ

}))
= Θ

(
log
(
1
ϵ

))
,

where ϵ is the error tolerance (e.g., 0.1, 0.01, in our work,
ϵ is set as 0.01). As for Algorithm 2, its main idea is the
twice uses of binary search method. Specifically, the first
while loop (Steps 2-8) is the first use of binary search
method, which is designed to determine an upper bound
(ub) of ϕ. The second use of binary search method is the
second while loop (Steps 10-20), which is designed to
search the exact ϕ such that

∑
j∈S phj = 1. Therefore, the

number of loops of the first while loop is Θ(log ub) and
that of the second while loop is Θ

(
log
(
ub
ϵ

))
. To analyze

the time complexity of Algorithm 2, we have to find an

Algorithm 3 Calculate phj (ϵ, µj , λ
h
Σ, ϕ)

Input: ϵ, µj , λ
h
Σ, ϕ.

Output: phj .

1: Initialization: Set ub← min
{
1,

µj

λh
Σ

}
, and lb← 0.

2: while (ub− lb > ϵ) do
3: Set mid← (ub+ lb)/2, and phj ← mid.
4: if ( ∂

∂ph
j

T̄h(phj ) < ϕ) then
5: Set lb← mid.
6: else
7: Set ub← mid.
8: end if
9: end while

10: Set phj ← (ub+ lb)/2.
11: return pj .

upper bound of ϕ, i.e., ub. From (25) of our paper, we
know that

ϕ =
∂T̄h

∂phj
=

(∑
i∈N

(
λh
i

)2
λh
Σ

)(
2phj
µj

+
2phj cjµj −

(
phj
)2
λh
Σ(

cjµj − phj λ
h
Σ

)2
)

≤

(∑
i∈N

λh
i

)(
2phj
µj

+
2phj cjµj −

(
phj
)2
λh
Σ(

cjµj − phj λ
h
Σ

)2
)

=
2phj λ

h
Σ

µj
+

2cjµj

(
phj λ

h
Σ

)
−
(
phj λ

h
Σ

)2(
cjµj − phj λ

h
Σ

)2
< 2cj +

2cjµj

(
phj λ

h
Σ

)(
cjµj − phj λ

h
Σ

)2
≤ 2cj +

2 (1− σ) (cjµj)
2

σ2(cjµj)
2

≤ 2cmax +
2 (1− σ)

σ2
, (27)

where cmax denotes the maximal number of cores of a
server, i.e., cmax = maxj∈M (cj), and σ is a relative small
positive constant (to maintain the convexity of the indi-
vidual strategy set of a user, phj λ

h
Σ ≤ (1− σ) cjµj (∀j ∈

M) is added to the optimization problem of the cloud
provider as a constraint, i.e., we try to maximize the prof-
its under the constraint phj λ

h
Σ ≤ (1− σ) cjµj (∀j ∈ M).

In our work, σ is also set as 0.01). Therefore, an upper
bound of ϕ, i.e., ub, in Algorithm 2 is

(
2cmax +

2(1−σ)
σ2

)
.

We can conclude that the number of loops of the first
while loop (Steps 2-8) is Θ

(
log
(
cmax +

(1−σ)
σ2

))
, and the

number of loops of the second while loop (Steps 10-20)
is Θ

(
log
(

cmax

ϵ + (1−σ)
ϵσ2

))
. Since at each iteration (loop)

of these two while loops, the main operation is the |S|
times call for Algorithm 3, and the possible maximal
value of |S| is m, these two while loops require time
Θ
(
mlog

(
1
ϵ

)
log
(
cmax +

(1−σ)
σ2

))
to complete. In addi-

tion, the time complexity of the for loop (Steps 22-24)
requires time Θ

(
m log

(
1
ϵ

))
. Therefore, the time complex-

ity of Algorithm 2 is Θ
(
m log

(
1
ϵ

)
log
(

cmax

ϵ + (1−σ)
ϵσ2

))
.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

9

4.3 Followers’ Decisions Analysis
We formulate the competitions among multiple users
as a generalized Nash equilibrium problem (GNEP). By
employing variational inequality (VI) theory, we analyze
the existence of a generalized Nash equilibrium solution
set. And then we propose an algorithm to compute a
generalized Nash equilibrium (GNE).

4.3.1 GNEP Formulation
We formulate the profit optimization problem of all the
cloud users as a generalized Nash equilibrium problem
(GNEP), in which each user selfishly optimizes his/her
own profit within his strategy set that also depends on
the strategies of the other users [38].

As mentioned earlier, all users are considered to be
selfish and each user i (i ∈ N ) tries to maximize his/her
utility or minimize his/her disutility, while ignoring
those of others and satisfying the global constraint. In
view of (20), we can observe that user i′s (i ∈ N )
optimization problem is equivalent to

minimize fi (λi,λ−i) =
∑
h∈H

(
δhTh

i − wi (r − c)λh
i

)
,

s.t. (λi,λ−i) ∈ Q̂F . (28)

The above formulation GNEP can be formally defined by
the tuple G =

⟨
Q̂F ,f

⟩
, where f = (f1, . . . , fn). The aim

of user i (i ∈ N ), given the other users′ strategies λ−i,
is to choose an λi ∈ Q̂i (λ−i) such that his/her disutility
function fi (λi,λ−i) is minimized.

Definition 4.1. A generalized Nash equilibrium (GNE) of
the game G =

⟨
Q̂F ,f

⟩
is a strategy profile λ∗ such that for

each user i (i ∈ N ):

λ∗
i ∈ argmin

λi∈Q̂i(λ∗
−i)

fi
(
λi,λ

∗
−i

)
,λ∗ ∈ Q̂F . (29)

At the generalized Nash equilibrium, each user cannot
further decrease its disutility by choosing a different
strategy while the strategies of other users are fixed.
The equilibrium strategy profile can be found when each
user′s strategy is the best response to the strategies of
other users.

4.3.2 GNE Existence Analysis
We try to analyze the existence of generalized Nash
equilibrium for the formulated GNEP by employing
variational inequality (VI) theory. When passing from the
GNEP (see Eq. (28)) to the associated VI, the solutions
of the GNEP that are also solutions of VI are termed
as variational solutions [39], and enjoy some remarkable
properties that make them particularly appealing in
many applications. Before address the problem, we show
two properties which are presented in Theorem 4.5 and
Theorem 4.6.

Theorem 4.5. For each cloud user i (i ∈ N ), the set Qi is
closed and convex, and each disutility function fi (λi,λ−i)

is continuously differentiable in λi. For each fixed tuple λ−i,
the disutility function fi (λi,λ−i) is convex in λi over the
set Ωi.

Proof: A complete proof of the theorem is given in
the supplementary material.

Theorem 4.6. Every solution of the variational inequality
(VI) problem, denoted by VI

(
Q̂F ,F

)
, is a solution of the

GNEP G =
⟨
Q̂F ,f

⟩
, where

F (λ) = (Fi (λi,λ−i))
n
i=1 , (30)

with
Fi (λi,λ−i) = ∇λifi (λi,λ−i) . (31)

Proof: A complete proof of the theorem is given in
the supplementary material.

Theorem 4.7. If λh
Σ ≤ minj∈S

{
(n+ 1) cjµj

/(
2nphj

)}
(h ∈

H), there exists a generalized Nash equilibrium solution set
for the formulated GNEP G =

⟨
Q̂F ,f

⟩
.

Proof: A complete proof of the theorem is given in
the supplementary material.

4.3.3 GNE Computation

With the establishment of the generalized Nash equilib-
rium (GNE) of the GNEP G, we now aim at obtaining a
suitable algorithm to compute the GNE.

Note that we can further rewrite the optimization
problem (28) as follows:

minimize fi (λi,λΣ) =
∑
h∈H

(
δhT̄h

i − wi (r − c)λh
i

)
,

s.t. λi ∈ Q̂i. (32)

with

T̄h
i

(
λh
i , λ

h
Σ

)
=
∑
j∈S

((
phj
)2

λh
i

µj
+

(
phj
)2

λh
i

cjµj − phj λ
h
Σ

)
, (33)

where λΣ denotes the aggregated request profile of all
users over the H future time slots, i.e., λΣ =

∑n
i=1 λi.

From the above equation, we can see that the calculation
of the disutility function of each individual user only
requires the knowledge of the aggregated request profile
of all users (λΣ) rather than the specific individual re-
quest profile of all other users (λ−i), which can bring two
advantages. On the one hand, it can reduce communica-
tion traffic between users and the cloud provider. On the
other hand, it can also keep privacy for each individual
user to certain extent, which is seriously considered by
many cloud users.

We can compute the variational solutions of the GNEP
(20) by solving the following Nash equilbirium (NEP).
This can be done by using the framework in [39], which



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

10

Algorithm 4 Calculate λ(ϵ,S,pS , τ )

Input: ϵ,S,pS , τ .
Output: λ.

1: Initialization: Randomly choose a feasible strategy
vector z(0) =

(
λ(0),η(0)

)
(z(0) ∈ QF,η). Set λ̄ ← 0,

η̄ ← 0, and k ← 0.
2: while (

∥∥z(k) − z(k−1)
∥∥ > ϵ) do

3: for (each cloud user i ∈ N ) do
4: Receive λ(k)

Σ from the cloud provider and com-
pute λ(k+1)

i as follows:

λ
(k+1)
i ∈

argmin
λi∈Qi

{
fi

(
λi,λ

(k)
Σ

)
+ ηT (k)

ψ
(
λi,λ

(k)
Σ

)
+ τ

2

∥∥λi − λ̄i

∥∥2
}
.

5: Send the updated strategy to the cloud provider.
6: end for
7: The cloud provider computes η(k+1) as

η(k+1) ∈ argmin
η≥0

{
−ηTψ (λ) +

τ

2
∥η − η̄∥2

}
.

8: if (Nash equilibrium is reached) then
9: The n + 1 cloud users updates their centroids:(

λ̄, η̄
)
←
(
λ(k+1),η(k+1)

)
10: end if
11: Set k ← k + 1.
12: end while
13: return λ(k).

leads to an algorithm Calculate λ. Specifically, the n+1
users try to solve the following optimization problem:

minimize fi (λi,λΣ) + η
Tψ (λi,λΣ) ,

s.t. λi ∈ Qi, ∀i ∈ N ,

minimize − ηTψ (λ) ,

s.t. η ≥ 0. (34)

where η = (ηh)
H
h=1, and

ψ (λ) =

(
n∑

i=1

λh
i − Γh

)H

h=1

, (35)

with

Γh = min
j∈S

{
(n+ 1) cjµj

/(
2nphj

)}
, h ∈ H. (36)

That is to say, when given the aggregated requests, we
must find a strategy vector z∗ = (λ∗,η∗) ∈ QF,η , where
QF,η = QF × R(H)

+ , such that

λ∗
i ∈ argmin

λi∈Qi

{
fi (λi,λ

∗
Σ) + η

Tψ (λi,λ
∗
Σ) +

τ

2

∥∥λi − λ̄i

∥∥2} ,

(37)
for each user i (i ∈ N ), and

η∗ ∈ argmin
η≥0

{
−ηTψ (λ∗) +

τ

2
∥η − η̄∥2

}
. (38)

where τ (τ > 0) is a regularization parameter and can
guarantee the convergence of the algorithm Calculate λ
if its value is large enough [39]. The idea is formalized
in Algorithm 4.

4.4 An Iterative Algorithm

In this section, we describe the whole process of our
proposed service mechanism, which is formalized in
Algorithm 5.

We describe operational process of the proposed it-
erative algorithm. At the beginning, the cloud provider
approximates its sever selection space (QL) and obtains
the approximated one (Q(ε)

L ). For each servers subset
(S̃) in (Q(ε)

L ), it initializes the allocation strategy (pS̃ ) in
different time slot h (h ∈ H). Under this servers subset
and allocation strategy, all of the users calculate the prop-
er request strategies. The cloud provider reconfigures
the allocation strategy such that the average response
time over all users is minimized. Each of the user in
the current set (Sc) calculates its utility, if the value is
less than its reserved value (vi), then he/she refuses to
use the cloud service. This process is terminated when
all of the users who choose the cloud service and their
corresponding request strategies are kept unchanged.
The algorithm terminates until it selects the optimal
servers subset from the approximated subset solution
space (Q(ε)

L ).

Algorithm 5 Iterative Algorithm (IA)

Input: ε,µ, a, b, r, τ,M
Output: S,pS .

1: Initialization: The cloud provider approx-
imates its solution space, i.e., Q(ε)

L ←
Calculate Q(ε)

L (ε, c,µ,E,M). Set πS ← 0.
2: for (each server subset S̃ ∈ Q(ε)

L ) do
3: Set Sc ← N , and Sl ← ∅.
4: for (each time slot h ∈ H) do
5: for (each server j ∈ S̃) do
6: Set phj = µj/

(∑
j∈S̃ µj

)
.

7: end for
8: end for
9: while (Sc ̸= Sl) do

10: Set Sl ← Sc, and λ← Calculate λ (ε,S,pS , τ).
11: for (each time slot h ∈ H) do
12: Set phS̃ ← Calculate pS̃

h
(
ε,µ, λh

Σ,S
)
.

13: end for
14: for (each user i ∈ Sc) do
15: if (Ui

(
λ
(k)
i ,λ

(k)
Σ

)
< vi) then

16: Set λi ← 0, and Sc ← Sc − {i}.
17: end if
18: end for
19: end while
20: Set πS̃ ← c

∑
i∈N

∑
h∈H λh

i − ET

(
S̃
)

.
21: if (πS̃ > πS ) then
22: Set πS ← πS̃ , S ← S̃, and pS ← pS̃ .
23: end if
24: end for
25: return S, pS .

5 PERFORMANCE EVALUATION

In this section, we provide some numerical results to
validate our theoretical analyses and illustrate the per-
formance of our proposed IA algorithm.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

11

TABLE 2: System parameters

System parameters (Fixed)–[Varied range] (increment)

Servers set control parameter (ε) (0.2)–[0.2, 1.0] (0.2)
Number of cloud users (n) (50)–[5, 50] (5)
Energy parameters (ξj , aj) [0.01, 2.5], 3
Weight value (wi) [1, 10]
User total requests (Λi) 35
Reservation value (vi) 0
Other parameters (b,m, µM, r, c, δ) (0.02, 50, 800, 100, 60, 1.1)

In the following simulation results, we assume that the
number of cloud users is at most 50 over future H time
slots, which is not a very long period of time. Specifically,
each time slot is set as one hour of a day and H is set
as 24. As shown in Table 2, the server set controlling
parameter (ε) is varied from 0.2 to 1.0 with increment
0.2. The number of cloud users (n) is varied from 5 to
50 with increment 5. For each server j (j ∈ M), the
energy consumption parameter ξj is randomly chosen
from 0.01 to 2.5 and aj is set as a constant 3. Each cloud
user i (i ∈ N ) chooses a weight value from 1 to 10 to
balance his/her net profit and time utility. For simplicity,
the reservation value vi and total requests Λi for each
user i (i ∈ N ) are set as 0 and 35, respectively. Market
benefit factor r is set to 100, per request charge by the
cloud provider c is equal to 60, and δ is set as 1.1. The
cost of one unit of energy is set as 0.02. In our simulation,
the number of servers (m) in the cloud provider is set as
50 and its total processing capacity (µM) is equal to 800.

5.1 Results of One Instance

0 50 100 150
0

2000

4000

6000

8000

10000

Iterations

Us
er

 u
tili

ty

 

 

User1, w
1
=5.4082

User4, w
4
=6.2122

User5, w
5
=4.2493

User8, w
8
=9.0897

User10, w
10

=5.2183

Fig. 2: Convergence process

Fig. 2 presents the utility results for five different
cloud users versus the number of iterations of our pro-
posed Calculate λ algorithm (Algorithm 4) in a certain
instance. Specifically, it presents the utility results of 5
randomly selected cloud users (users 1, 4, 5, 8, and 10).
We can observe that the utilities of all users seem to
linearly increase and finally reach a relatively stable state
with the increase of iteration number. The reason behind
lies in that the request strategies of all users are kept
unchanged, i.e., reach a generalized Nash equilibrium

solution after some iterations. In addition, the utility
with a larger weight value reaches a relatively stable
state more faster. This trend also reflects the convergence
process of our proposed IA algorithm at each iteration.
It can be seen that the utility of each user has already
achieved a relatively stable state after about 80 iterations,
which reflects the high efficiency of the developed algo-
rithm.

In Fig. 3, we plot the request profile of some cloud
users for a scenario of 50 users. Specifically, it presents
the requests shape of some users over future 24 time
slots. We randomly select 3 users (users 25, 38, and 42).
It can be seen that the requests of all users tend to
decrease with the delay of time slot. The reason behind
lies in the fact that in our proposed model, we take into
average response time into account and the deteriorating
factor grows exponentially, which also demonstrates the
downward trend of the aggregated requests shown in
Fig. 4, i.e., the aggregated requests slightly decrease with
the delay of time slot.

0 5 10 15 20 25
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time slots

U
se

r r
eq

ue
st

s

 

 

User38
User42
User25

Fig. 3: Specific user requests

0 5 10 15 20 25
62

63

64

65

66

67

68

69

Time slots

Us
er

 re
qu

es
ts

 

 

Aggregation

Fig. 4: Aggregated load

In Fig. 5, we present the impacts of different servers
subset. Table 3 shows an instance of servers subset when
ε is 0.2. In that table, we show the first 8 server subset
obtained by our Calculate Q(ε)

L algorithm (Algorithm
1). Fig. 5 shows the corresponding results. Specifically,
it shows the total charge CT from all users, where
CT = c

∑
i∈N

∑
h∈H λh

i , total energy cost ET , where
ET = H

∑
j∈S Ej , and net profit π = CT−ET over future

H time slots. As can be seen from Fig. 5, at first, the net
profit of the cloud provider increases with the increase of



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

12

TABLE 3: System parameters

No. of subset Servers to provide service

1 {50}
2 {49, 50}
3 {48, 49, 50}
4 {47, 48, 49, 50}
5 {44, 45, 46, 47, 48, 49, 50}
6 {41, 42, 43, 44, 45, 46, 47, 48, 49, 50}
7 {31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 47, 48, 49, 50}
8 {27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

total processing capacity of provided servers. However,
it decreases after the number of subset exceeds 4. The
reason behind lies in the fact that at the beginning, the
aggregated requests from all users can not exceed the
total processing capacity provided by the cloud provider
(i.e., λh

Σ < µS ,∀h ∈ H), while the provided processing
capacity is large enough, the aggregated requests can
not rise more due to their individual limits (i.e., λh

i <
Λi, ∀i ∈ N ). This is also the reason that the total charge
(CT ) increases at first and reaches a relatively stable state
when the processing capacity is large enough, as well as
the trend of energy cost and thus reflects the results of
net profit (see Fig. 5).

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

Number of servers set

Pr
of

it 
of

 c
lo

ud
 p

ro
vid

er

 

 

 C
T

 E
T

 π

Fig. 5: Impact of servers

5.2 Results of Various Configuration Instances

To simulate the heterogeneous system and the different
preferences of multiple cloud users, i.e., the different
preferences over payments and time efficiencies, we
randomly generate the server parameter (ξj) for each
server and the weight value (wi) for each user according
to Table 2. For the simulated results, we perform 300
runs, of which the average value is computed.

Fig. 6 and Fig. 7 show the impacts of the number of
cloud users and the value of ε. In Fig. 6, we compare
the net profit (π) obtained by our IA algorithm with
that of using all 50 servers (πT ). The number of cloud
users increases from 5 to 50 with increment 5. As men-
tioned above, we perform 300 runs and compute the
average value. As shown in Fig. 6, we also present the
maximal and minimal profit values over the 300 runs.

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14
x 10

4

Number of users

Pr
ofi

t o
f c

lou
d p

ro
vid

er

 

 

 π
 π

T

Fig. 6: Impact of users

Obviously, the average net profit value obtained by our
IA algorithm increases with the increase of the number
of cloud users. We can also observe that the net profit
by using all servers is negative at the beginning. The
reason behind lies in that the aggregated requests from
all users are not enough while the total energy cost of all
servers is large. However, our results are always better
than those of by using all servers. This shows that our
IA algorithm can select appropriate servers to provide
services. Fig. 7 shows the impact of ε. It can be seen that
the average net profit value obtained by IA algorithm is
the largest when ε is set to 0.2. The reason behind lies in
the fact that the smaller the value of ε is, it takes more
probability for our algorithm to select an appropriate
servers subset equalling to the optimal one, that is, it
takes more probability that the optimal servers subset is
included in our approximated solution space.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6
x 10

4

Value of  ε

Pr
ofi

t o
f c

lou
d p

ro
vid

er

 

 

 π
 π

T

Fig. 7: Impact of ε

6 CONCLUSIONS AND FUTURE WORK

With the popularization of cloud computing and its
many advantages such as cost-effectiveness, elasticity,
and scalability, more and more applications are moved
from local computing environment to cloud center. In
this work, we try to design a new service mechanism
for profit optimizations of both a cloud provider and its
multiple users.

We consider the problem from a game theoretic per-
spective and characterize the relationship between the
cloud provider and its multiple users as a Stackelberg



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

13

game, in which the strategies of all users are subject
to that of the cloud provider. The cloud provider tries
to select appropriate servers and configure a proper
request allocation strategy to reduce energy cost while
satisfying its cloud users at the same time. We approx-
imate its server selection space by adding a controlling
parameter and configure an optimal request allocation
strategy. For each user, we design a utility function
which combines the net profit with time efficiency and
try to maximize its value under the strategy of the cloud
provider. We formulate the competitions among all users
as a generalized Nash equilibrium problem (GNEP). We
solve the problem by employing varational inequality
(VI) theory and prove that there exists a generalized
Nash equilibrium solution set for the formulated GNEP.
Finally, we propose an iterative algorithm (IA), which
characterizes the whole process of our proposed service
mechanism. We conduct some numerical calculations to
verify our theoretical analyses. The experimental results
show that our IA algorithm can reduce energy cost and
improve users utilities to certain extent by configuring
proper strategies.

As part of future work, we will study the cloud
center choice among multiple different cloud providers
or determine a proper mixed choice strategy. Another di-
rection is the opposite, we consider problem from cloud
providers and study the competitions among multiple
cloud providers, which may incorporate charge price,
service quality, and so on.

ACKNOWLEDGMENTS

We are very grateful to the associate editor and anony-
mous reviewers for their comments and suggestions
which have significantly improved the quality of the
manuscript. The research was partially funded by the
Key Program of National Natural Science Foundation
of China (Grant No. 61432005), the National Outstand-
ing Youth Science Program of National Natural Sci-
ence Foundation of China (Grant No. 61625202), the
International (Regional) Cooperation and Exchange Pro-
gram of National Natural Science Foundation of China
(Grant No. 61661146006), the National Natural Science
Foundation of China (Grant Nos. 61370095, 61472124,
61602170), the International Science & Technology Coop-
eration Program of China (Grant Nos. 2015DFA11240),
the National Key R&D Program of China (Grant No.
2016YFB0201402), and the Chinese Postdoctoral Science
Foundation (Grant Nos. 2016M602409, 2016M602410).

REFERENCES
[1] A. Prasad and S. Rao, “A mechanism design approach to resource

procurement in cloud computing,” Computers, IEEE Transactions
on, vol. 63, no. 1, pp. 17–30, Jan 2014.

[2] R. Pal and P. Hui, “Economic models for cloud service markets:
Pricing and capacity planning,” Theoretical Computer Science, vol.
496, no. 0, pp. 113 – 124, 2013.

[3] P. D. Kaur and I. Chana, “A resource elasticity framework for
qos-aware execution of cloud applications,” Future Generation
Computer Systems, vol. 37, no. 0, pp. 14 – 25, 2014.

[4] L. Duan, D. Zhan, and J. Hohnerlein, “Optimizing cloud data
center energy efficiency via dynamic prediction of cpu idle inter-
vals,” in 2015 IEEE 8th International Conference on Cloud Computing.
IEEE, 2015, pp. 985–988.

[5] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and energy
aware scheduling algorithm for scientific workflows with dead-
line constraint in clouds,” IEEE Transactions on Services Computing,
2015, doi: 10.1109/TSC.2015.2466545.

[6] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: research problems in data center networks,” ACM
SIGCOMM computer communication review, vol. 39, no. 1, pp. 68–
73, 2008.

[7] J. Cao, K. Hwang, K. Li, and A. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” Par-
allel and Distributed Systems, IEEE Transactions on, vol. 24, no. 6,
pp. 1087–1096, June 2013.

[8] Y. Feng, B. Li, and B. Li, “Price competition in an oligopoly market
with multiple iaas cloud providers,” Computers, IEEE Transactions
on, vol. 63, no. 1, pp. 59–73, Jan 2014.

[9] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation
and load distribution for multiple heterogeneous multicore serv-
er processors across clouds and data centers,” Computers, IEEE
Transactions on, vol. 63, no. 1, pp. 45–58, Jan 2014.

[10] S. Jrgensen and G. Zaccour, “A survey of game-theoretic models
of cooperative advertising,” European Journal of Operational Re-
search, vol. 237, no. 1, pp. 1 – 14, 2014.

[11] S. Liu, S. Ren, G. Quan, M. Zhao, and S. Ren, “Profit aware load
balancing for distributed cloud data centers,” in Parallel Distribut-
ed Processing (IPDPS), 2013 IEEE 27th International Symposium on,
May 2013, pp. 611–622.

[12] U. Lampe, M. Siebenhaar, A. Papageorgiou, D. Schuller, and
R. Steinmetz, “Maximizing cloud provider profit from equilibri-
um price auctions,” in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, June 2012, pp. 83–90.

[13] H. Goudarzi and M. Pedram, “Maximizing profit in cloud com-
puting system via resource allocation,” in Proceedings of the
2011 31st International Conference on Distributed Computing Systems
Workshops, ser. ICDCSW ’11. IEEE Computer Society, 2011, pp.
1–6.

[14] E. Körpeoğlu, A. Şen, and K. Güler, “Non-cooperative joint re-
plenishment under asymmetric information,” European Journal of
Operational Research, vol. 227, no. 3, pp. 434–443, 2013.

[15] C. Liu, K. Li, C. Xu, and K. Li, “Strategy configurations of multiple
users competition for cloud service reservation,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 2, pp. 508–520, 2016.

[16] M. J. Osborne and A. Rubinstein, “A course in game theory,” MIT
press, 1994.

[17] S. S. Aote and M. U. Kharat, “A game-theoretic model for dy-
namic load balancing in distributed systems,” in Proceedings of the
International Conference on Advances in Computing, Communication
and Control, ser. ICAC3 ’09. ACM, 2009, pp. 235–238.

[18] N. Li and J. Marden, “Designing games for distributed optimiza-
tion,” Selected Topics in Signal Processing, IEEE Journal of, vol. 7,
no. 2, pp. 230–242, April 2013.

[19] S. Penmatsa and A. T. Chronopoulos, “Game-theoretic static
load balancing for distributed systems,” Journal of Parallel and
Distributed Computing, vol. 71, no. 4, pp. 537 – 555, 2011.

[20] G. Scutari and J.-S. Pang, “Joint sensing and power allocation in
nonconvex cognitive radio games: Nash equilibria and distributed
algorithms,” Information Theory, IEEE Transactions on, vol. 59, no. 7,
pp. 4626–4661, July 2013.

[21] Z. Wang, A. Szolnoki, and M. Perc, “Rewarding evolutionary
fitness with links between populations promotes cooperation,”
Journal of Theoretical Biology, vol. 349, no. 0, pp. 50 – 56, 2014.

[22] G. Scutari, D. Palomar, F. Facchinei, and J.-S. Pang, “Convex
optimization, game theory, and variational inequality theory,”
Signal Processing Magazine, IEEE, vol. 27, no. 3, pp. 35–49, May
2010.

[23] K. Li, C. Liu, and K. Li, “An approximation algorithm based
on game theory for scheduling simple linear deteriorating jobs,”
Theoretical Computer Science, vol. 543, no. 0, pp. 46 – 51, 2014.

[24] C. A. Ioannou and J. Romero, “A generalized approach to belief
learning in repeated games,” Games and Economic Behavior, vol. 87,
no. 0, pp. 178 – 203, 2014.

[25] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price
bidding configurations for resource usage in cloud computing,”



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2701793, IEEE
Transactions on Cloud Computing

14

IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 8,
pp. 2168–2181, 2016.

[26] P. Wang, Y. Qi, and X. Liu, “Power-aware optimization for het-
erogeneous multi-tier clusters,” Journal of Parallel and Distributed
Computing, vol. 74, no. 1, pp. 2005 – 2015, 2014.

[27] Y. Gao, H. Guan, Z. Qi, T. Song, F. Huan, and L. Liu, “Service
level agreement based energy-efficient resource management in
cloud data centers,” Computers & Electrical Engineering, vol. 40,
no. 5, pp. 1621 – 1633, 2014.

[28] J. Mei, K. Li, J. Hu, S. Yin, and E. H.-M. Sha, “Energy-aware
preemptive scheduling algorithm for sporadic tasks on {DVS}
platform,” Microprocessors and Microsystems, vol. 37, no. 1, pp. 99
– 112, 2013.

[29] D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multipro-
cessor real-time systems,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 14, no. 7, pp. 686–700, July 2003.

[30] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 755 – 768, 2012, special Section: Energy efficiency in
large-scale distributed systems.

[31] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, “A co-
ordinator for scaling elastic applications across multiple clouds,”
Future Generation Computer Systems, vol. 28, no. 8, pp. 1350 – 1362,
2012, including Special sections SS: Trusting Software Behavior
and SS: Economics of Computing Services.

[32] M. Mezmaz, N. Melab, Y. Kessaci, Y. Lee, E.-G. Talbi, A. Zomaya,
and D. Tuyttens, “A parallel bi-objective hybrid metaheuristic for
energy-aware scheduling for cloud computing systems,” Journal
of Parallel and Distributed Computing, vol. 71, no. 11, pp. 1497 –
1508, 2011.

[33] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” Design Automation
Conference, vol. 0, pp. 868–873, 2004.

[34] I. Atzeni, L. Ordonez, G. Scutari, D. Palomar, and J. Fonollosa,
“Noncooperative day-ahead bidding strategies for demand-side
expected cost minimization with real-time adjustments: A gnep
approach,” Signal Processing, IEEE Transactions on, vol. 62, no. 9,
pp. 2397–2412, 2014.

[35] H. Chen, Y. Li, R. Louie, and B. Vucetic, “Autonomous demand
side management based on energy consumption scheduling and
instantaneous load billing: An aggregative game approach,” Smart
Grid, IEEE Transactions on, vol. 5, no. 4, pp. 1744–1754, 2014.

[36] H. Soliman and A. Leon-Garcia, “Game-theoretic demand-side
management with storage devices for the future smart grid,”
Smart Grid, IEEE Transactions on, vol. 5, no. 3, pp. 1475–1485, 2014.

[37] G. Du, R. J. Jiao, and M. Chen, “Joint optimization of product
family configuration and scaling design by stackelberg game,”
European Journal of Operational Research, vol. 232, no. 2, pp. 330 –
341, 2014.

[38] J. Wang, M. Peng, S. Jin, and C. Zhao, “A generalized nash
equilibrium approach for robust cognitive radio networks via gen-
eralized variational inequalities,” Wireless Communications, IEEE
Transactions on, vol. 13, no. 7, pp. 3701–3714, 2014.

[39] G. Scutari, D. Palomar, F. Facchinei, and J.-S. Pang, “Monotone
games for cognitive radio systems,” in Distributed Decision Mak-
ing and Control, ser. Lecture Notes in Control and Information
Sciences. Springer London, 2012, vol. 417, pp. 83–112.

Chubo Liu received the BS and PhD degrees
in computer science and technology from Hu-
nan University, China, in 2011 and 2016, re-
spectively. His research interests include mainly
in modeling and scheduling of distributed com-
puting systems, approximation and randomized
algorithms, game theory, grid, and cloud com-
puting. He has published several papers in jour-
nals such as the IEEE Transactions on Parallel
and Distributed Systems, the Future Generation
Computer Systems, and the Theoretical Com-

puter Science.

Kenli Li received the PhD degree in comput-
er science from Huazhong University of Sci-
ence and Technology, China, in 2003. He was
a visiting scholar with the University of Illinois
at Urbana-Champaign from 2004 to 2005. He
is currently the dean and a full professor of
computer science and technology with Hunan
University and deputy director of National Su-
percomputing Center in Changsha. His major
research areas include parallel computing, high-
performance computing, grid, and cloud comput-

ing. He has published more than 150 research papers in international
conferences and journals such as the IEEE Transactions on Computers,
the IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Signal Processing, the Journal of Parallel and Distribut-
ed Computing, ICPP, and CCGrid. He serves on the editorial board of
the IEEE Transactions on Computers. He is an outstanding member of
the CCF. He is a senior member of the IEEE.

Keqin Li is a SUNY Distinguished Professor
of computer science. His current research in-
terests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU-GPU hybrid
and cooperative computing, multicore comput-
ing, storage and file systems, wireless com-
munication networks, sensor networks, peer-to-
peer file sharing systems, mobile computing,

service computing, Internet of things and cyber-physical systems. He
has published over 480 journal articles, book chapters, and refereed
conference papers, and has received several best paper awards. He
is currently or has served on the editorial boards of IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, IEEE Transactions on Services
Computing, IEEE Transactions on Sustainable Computing. He is an
IEEE Fellow.

Rajkumar Buyya is a Professor of Computer
Science and Software Engineering; Future Fel-
low of the Australian Research Council; and
Director of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft Pty Ltd., a spin-
off company of the University, commercialising
its innovations in Grid and Cloud Computing.
He received B.E and M.E in Computer Science
and Engineering from Mysore and Bangalore

Universities in 1992 and 1995 respectively; and a Doctor of Philosophy
(PhD) in Computer Science and Software Engineering from Monash
University, Melbourne, Australia in 2002. He was the founding Editor-
in-Chief (EiC) of IEEE Transactions on Cloud Computing (TCC). He has
authored over 500 publications and five text books including ”Mastering
Cloud Computing” published by McGraw Hill, Morgan Kaufmann, and
China Machine Press for Indian, International, and Chinese markets
respectively.


