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Abstract—The emergence of cloud infrastructure has signifi-1

cantly reduced the costs of hardware and software resources in2

computing infrastructure. To ensure security, the data is usually3

encrypted before it’s outsourced to the cloud. Unlike searching4

and sharing the plain data, it is challenging to search and share5

the data after encryption. Nevertheless, it is a critical task for6

the cloud service provider as the users expect the cloud to7

conduct a quick search and return the result without losing8

data confidentiality. To overcome these problems, we propose9

a ciphertext-policy attribute-based mechanism with keyword10

search and data sharing (CPAB-KSDS) for encrypted cloud11

data. The proposed solution not only supports attribute-based12

keyword search but also enables attribute-based data sharing13

at the same time, which is in contrast to the existing solutions14

that only support either one of two features. Additionally, the15

keyword in our scheme can be updated during the sharing phase16

without interacting with the PKG. In this paper, we describe the17

notion of CPAB-KSDS as well as its security model. Besides,18

we propose a concrete scheme and prove that it is against19

chosen ciphertext attack and chosen keyword attack secure in20

the random oracle model. Finally, the proposed construction21

is demonstrated practical and efficient in the performance and22

property comparison.23

Index Terms—Cloud Data Sharing, Searchable Attribute-based24

Encryption, Attribute-based Proxy Re-encryption, Keyword Up-25

date.26

I. INTRODUCTION27

CLOUD computing has been the remedy to the problem of28

personal data management and maintenance due to the29

growth of personal electronic devices. It is because users can30

outsource their data to the cloud with ease and low cost. The31

emergence of cloud computing has also influenced and dom-32

inated Information Technology industries. It is unavoidable33

that cloud computing also suffers from security and privacy34

challenges.35

Encryption is the basic method for enabling data confiden-36

tiality and attribute-based encryption is a prominent represen-37

tative due to its expressiveness in user’s identity and data [1]–38

[4]. After the attribute-based encrypted data is uploaded in39

the cloud, authorized users face two basic operations: data40
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searching and data sharing. Unfortunately, traditional attribute- 41

based encryption just ensures the confidentiality of data. 42

Hence, it does not support searching and sharing. 43

Suppose in a Person Health Record (PHR) system [5]–[7], a 44

group of patients store their encrypted personal health reports 45

Enc(D1, P1,KW1), · · · , Enc(Dn, Pn,KWn) in the cloud, 46

where Enc(Di, Pi,KWi) is an attribute-based encryption of 47

the health report Di under an access policy Pi and a keyword 48

KWi. Doctors satisfying the policy Pi can recover the record 49

Di. However, they could not retrieve the specific record by 50

simply typing the keyword. Instead, a doctor Alice needs 51

to first download and decrypt the encrypted records. After 52

decryption, she can use the keyword to search the specific 53

one from a bunch of the decrypted health records. Another 54

inconvenient scenario is that Alice attempts to share a record 55

with her colleague, in the case like she needs to consult the 56

report with a specialist. In this situation, she must download 57

the encrypted files, then decrypt them. Then, after she has 58

acquired the underlying record, she encrypts the record using 59

the policy of the specialist. As a result, this system is very 60

inefficient in terms of searching and sharing. 61

Additionally, the traditional attribute-based encryption 62

(ABE) technology used in the current PHR systems might 63

cause another issue for keyword maintenance because the 64

ABE algorithm could not scale well for keyword updates 65

once the number of the records significantly increases. For 66

example, after reviewing a health report with the patient self 67

marked “contagious” tag, Alice from hospital A confirmed it 68

is not the contagious condition and corrected the tag to “non- 69

contagious”. In order for Alice to share a health report that is 70

encrypted with a tag “contagious” with another doctor from 71

hospital B, she needs to change the tag as “non-contagious” 72

without decrypting the report. As the traditional attribute-based 73

encryption with keyword search can not support keyword 74

updating, Alice has to generate a new tag for all shared 75

ciphertexts so as to keep the privacy of the keyword. 76

From above scenarios, the traditional attribute-based encryp- 77

tion is not flexible for data searching and sharing. Additionally, 78

attribute-based encryption is not well scaled when there is 79

an update request to the keyword. In order to search and 80

share a specific record, Alice downloads and decrypts the 81

ciphertexts. However, this process is impractical to Alice 82

especially when there is a tremendous number of ciphertexts. 83

The worse situation is the data owner Alice should stay online 84

all the time because Alice needs to provide her private key 85

for the data decryption. Thus, ABE solution does not take the 86
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advantages of cloud computing.87

An alternative method is to delegate a third party to do the88

search, re-encrypt and keyword update work instead of Alice.89

Alice can store her private key in the third party’s storage,90

and thus the third party can do the heavy job on behalf of91

Alice. In such an approach, however, we need to fully trust92

the third party since it can access to Alice’s private key. If93

the third party is compromised, all the user data including94

sensitive privacy will be leaked as well. It would be a severe95

disaster to the users.96

A. Related Work97

In an ABE, the users’ identities are described by a list98

of attributes [1]. After ABE’s pioneering work [1], several99

scholars extended the notion of ABE. For example, key-policy100

attribute-based encryption (KP-ABE) [2], where the private101

key of a user is related to an access policy and the ciphertext102

corresponds to an attribute set. In contrast, there is another103

example called ciphertext-policy attribute-based encryption104

(CP-ABE) [3], where the private key is generated with an105

attribute set and the ciphertext is related to an access policy. In106

both KP-ABE and CP-ABE, the ciphertext length is linear with107

the size of the access policy. To reduce the ciphertext length,108

Emura et al. [8] proposed a ciphertext-policy attribute-based109

encryption scheme with constant ciphertext length. Although it110

supports the AND-gates on multi attributes, it doesn’t support111

the monotonic express on attributes. After that, a number112

of constructions have come out to enhance the efficiency,113

security and expressiveness [4], [9], [10]. To illustrate the114

ABE’s application, Li et al. [11] adopted the notion of115

attribute-based encryption in the PHR system to achieve fine-116

grained access control on personal health records. A ciphertext117

policy attribute-based encryption with hidden policy [12] was118

proposed to hide the access policy which may leak the user’s119

privacy in the PHR system. The concept of outsourcing120

decryption attribute-based encryption was introduced to enable121

a computation-constrained mobile device to outsource most122

of the decryption work to a service provider [13]. However,123

there is no guarantee that the service provider could return the124

correct partial decryption ciphertext. To overcome this issue,125

Lai [14] and Li [15] proposed attribute-based encryption with126

verifiable outsourced decryption schemes respectively.127

Proxy re-encryption was designed to delegate the decryption128

[16]. Prior work has focused on the scheme’s functionality,129

efficiency, and security model [17] [18] [19], [20]. Later, Liang130

et al. [21] presented an attribute-based proxy re-encryption131

(AB-PRE) scheme by using proxy re-encryption to a attribute-132

based setting. Meanwhile, another AB-PRE scheme was pro-133

posed to support “AND” gates on positive and negative at-134

tributes [22]. Following their work, Liang et al. [23] proposed a135

ciphertext-policy attribute-based proxy re-encryption (CPAB-136

PRE) scheme supporting a monotonic access formula in the137

selective model. Later, the security has been improved in an138

adaptive model [24]. Ge et al. [25], [26] presented two KP-139

ABE schemes that are secure in the selective and adaptive140

model respectively. Liang et al. [27] proposed a deterministic141

finite automata (DFA) based PRE scheme, where the access 142

policy is viewed as a DFA. Unfortunately, the privacy could 143

not be preserved in keyword search in all of these schemes. 144

Allowing the search ability in public key encryption is 145

another research direction that has gained popularity. The 146

primitive of searchable encryption in a symmetric key setting 147

was first introduced by Song et al. [28]. Following their 148

work, many searchable encryption schemes with different 149

functionalities were proposed such as the ranking search on 150

keyword [29] and fuzzy keyword searching [30]. To extend 151

the searchable encryption to the public key setting, Boneh et 152

al. [31] proposed the notion of public key encryption with 153

keyword search (PEKS). A PEKS scheme supporting range, 154

subset and conjunctive queries on keywords was presented by 155

Boneh and Waters [32] in TCC 2007. Later, attribute-based 156

keyword search was proposed via the combination of a PEKS 157

and ABE [33]. A more efficient attribute-based searchable 158

encryption scheme was achieved by involving the data owner 159

to issue keys for a data user [34]. A ciphertext policy attribute- 160

based keyword search scheme was introduced in the shared 161

multi-owner setting [35]. However, none of the above schemes 162

could support the data sharing function. 163

A KP-ABPRE with keyword search scheme was designed 164

to allow a server not only can search for a certain ciphertext 165

but also re-encrypt it [36]. The PKG in this scheme controls 166

the access policy in a traditional key policy ABE scheme, and 167

the data owner loses the ability to assign access policy on his 168

encrypted data. It is, however, worth noting here that in a PHR 169

system [11], [12], the data owner should have full control on 170

the data to be shared. Thus, a ciphertext policy attribute-based 171

encryption with keyword search and data sharing scheme is 172

desired. One additional issue with the work [36] is that the 173

data owner must interact with the PKG and request the PKG to 174

generate a search token which will greatly increase the burden 175

of PKG. Moreover, it is the delegator that needs to share the 176

data with the delegatee, which is unrelated with the PKG. 177

Therefore, they left it as an open problem to construct an 178

attribute-based encryption scheme supporting data searching 179

and data sharing without the help of PKG during the searching 180

and sharing phase. 181

B. Motivation 182

Prior work did not demonstrate that the existing attribute- 183

based mechanisms could both support keyword search and data 184

sharing in one scheme without resorting to PKG. Therefore, 185

a new attribute-based mechanism is needed to achieve the 186

goal for the above PHR scenario. One may argue that the 187

problem can be trivially solved by combining an AB-PRE 188

scheme and attribute-based keyword search scheme (AB-KS). 189

However, the combination could result in two major issues: 1) 190

the combined scheme is not CCA secure, 2) it is vulnerable to 191

collusion attack. The detailed explanation will be given later 192

in subsection IV-A. 193

Therefore, a secure scheme is desired to fully support 194

keyword searching, data sharing as well as the protection of 195
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the privacy of keyword. All of these concerns motivate us to196

design a mechanism that:197

1) allows the data owner to search and share the encrypted198

health report without the unnecessary decryption process.199

2) supports keyword updating during the data sharing phase.200

3) more importantly, does not need the exist of the PKG,201

either in the phase of data sharing or keyword updating.202

4) the data owner can fully decide who could access the data203

he encrypted.204

In this paper we first point out a notion of ciphertext-205

policy attribute-based mechanism with keyword search and206

data sharing (CPAB-KSDS), which also supports keyword207

updating.208

C. Our Contribution209

We first introduce a ciphertext-policy attribute-based mecha-210

nism with keyword search and data sharing (CPAB-KSDS) for211

encrypted cloud data. The searching and sharing functionality212

are enabled in the ciphertext-policy setting. Furthermore, our213

scheme supports the keyword to be updated during the sharing214

phase. After presenting the construction of our mechanism, we215

proof its chosen ciphertext attack (CCA) and chosen keyword216

attack (CKA) security in the random oracle model. The217

proposed construction is demonstrated practical and efficient218

in the performance and property comparison.219

II. SYSTEM ARCHITECTURE AND DEFINITIONS220

In this section, we first present the architecture of our221

CPAB-KSDS scheme. Following that, we will describe the222

definition of the proposed scheme and its security model.223

A. System Architecture224

The CPAB-KSDS system, shown in Fig 1, consists of five225

entities: the PKG, the cloud server (act as the proxy), the226

health record owner, the delegator (recipient of the original227

ciphertext) and the delegatee (recipient of the re-encrypted228

ciphertext). The workflow for the system is described as229

follows.230

System Initialization: This phase is executed by the PKG.231

The PKG generates the system public parameters that are232

publicly available for all the participants of the system and233

the master secret key which is kept private by the PKG.234

Registration: The registration phase is executed by the235

PKG. When each user issues a registration request to the PKG,236

the PKG generates a private corresponds to his attribute set.237

Ciphertext Upload: The personal health record owner238

encrypts his record with the original recipient’s policy and the239

keyword, and then upload the encrypted record to the cloud240

server.241

Ciphertext Search: The recipient generates a search token242

and issues a search request contains the search token to the243

cloud server. The cloud server searches the ciphertext via the244

Test algorithm and returns the search result to the recipient.245

Re-encryption: The delegator generates a re-encryption key246

and issues a re-encryption request contains the re-encryption247

key to the cloud server. The cloud server converts the original248

PKG

Delegator Delegatee

Cloud server act as proxy

Health record owner

3. Upload encrypted record

5. Execute the Test 
algorithm

8. Execute the Re-encryption 
algorithm

11. Decrypt the 
ciphertext

Fig. 1. System architecture.

encrypted record to a re-encrypted ciphertext under a new 249

access policy. 250

Decryption: The recipient (a delegatee or a delegator) 251

requests a re-encrypted (or an original) ciphertext from the 252

cloud server and then decrypts the ciphertext with his own 253

private key to get the underlying record. Note that, a delegatee 254

may act as a delegator for other participants. 255

B. CPAB-KSDS 256

Definition 1 (CPAB-KSDS). A CPAB-KSDS scheme is 257

described as follows: 258

• Setup(λ,U) → (PK,MK): The Setup algorithm is 259

executed by the PKG. Input a security parameter λ and 260

the description of attribute universe U . Output public 261

parameters PK and a master secret key MK. 262

• KeyGen(MK,S) → skS : The KeyGen algorithm is 263

executed by the PKG. Input MK and an attribute set S. 264

Output a private key skS . 265

• Enc(m, (M,ρ),KW ) → CT : The Enc algorithm is 266

executed by the health record owner. Input a message m, 267

an access policy (M,ρ)1 and a keyword KW . Output an 268

original ciphertext CT . 269

• TokenGen(skS ,KW
′)→ τKW ′ : The TokenGen algo- 270

rithm is executed by the delegator. Input the private key 271

skS and a keyword KW ′. Output a search token τKW ′ 272

for the keyword KW ′. 273

• Test(CT, τKW ′)→ 1/0: The Test algorithm is executed 274

by the cloud server. Input a ciphertext CT under KW and 275

a search token τKW ′ . Output returns 1 if KW = KW ′, 276

otherwise, simply returns 0. 277

• RKeyGen(skS , (M
′, ρ′),KW ′) → rk: The RKeyGen 278

algorithm is executed by the delegator. Input a private 279

key skS , an access structure (M ′, ρ′) and a keyword 280

KW ′. Output the re-encryption key rk. Here, S satisfies 281

(M,ρ) but not satisfies (M ′, ρ′). Note that, the keyword 282

input KW ′ may not equal to the keyword KW in the 283

RKeyGen algorithm. If KW ′ 6= KW , it means that the 284

delegator wants to update the keyword in the ciphertext 285

1We adopt the definition of an access policy as [37].
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and the keyword in the ciphertext will be updated in the286

re-encryption phase.287

• ReEnc(CT, rk) → CT : The ReEnc algorithm is ex-288

ecuted by the cloud server. Input an original ciphertext289

CT and rk computed from RKeyGen. Output the re-290

encrypted ciphertext CT under a new access policy and291

keyword.292

• Dec(skS , CT )→ m/⊥: The Dec algorithm is executed293

by the delegator/delegatee to decrypt the original/re-294

encrypted ciphertext. Input a ciphertext CT under access295

policy (M,ρ) and a private key skS . Output the plaintext296

m, if S |= (M,ρ), and ⊥ otherwise.297

In the above algorithms, for simplicity, we omit PK as298

input.299

Consistency: Generally, a CPAB-KSDS scheme is
consistent if using a corresponding search token
can search the correctly generated ciphertext and a
legal secret key can decrypt the correct ciphertext.
Formally, for a message m ∈ GT , KW ∈ {0, 1}∗,
Setup(λ, U) → (PK,MK), KeyGen(MK,S) → skS ,
TokenGen(skS ,KW ) → τKW , TokenGen(skS ,KW ) →
τKW ′ , RKeyGen(skS , (M

′, ρ′),KW ′)→ rk:

Dec(skS , Enc(m, (M,ρ),KW )) = m;

Test(τKW , Enc(m, (M,ρ),KW )) = 1;

Dec(skS′ , ReEnc(Enc(m, (M,ρ),KW ), rk)) = m;

Test(τKW ′ , ReEnc(Enc(m, (M,ρ),KW ), rk)) = 1;

if S |= (M,ρ) and S′ |= (M ′, ρ′)2.300

C. Threat Model for CPAB-KSDS301

Our threat model considers the confidentiality for the plain-302

text and the keyword. We use three security games that303

consider the security of the original ciphertext, re-encrypted304

ciphertext, and keyword individually.305

Definition 2 (IND-CCA-Or). If there does not exist an306

PPT (probability polynomial time) adversary can win the game307

described below with a non-negligible advantage, then the308

CPAB-KSDS scheme is indistinguishable chosen ciphertext309

secure at original ciphertext (IND-CCA-Or).310

1) Init. A chooses the challenge policy (M∗, ρ∗) that is a311

l∗ × n∗ matrix.312

2) Setup. Challenger C executes Setup(λ, U) to retrieve313

PK and MK then forwards PK to the A.314

3) Phase I. A queries:315

a) Osk(S): A queries on S, the challenger C executes316

KeyGen(mk, S) to obtain skS , and forwards it to the317

A.318

b) Otoken(S,KW ): A queries on S and a keyword319

KW , C runs KeyGen(msk, S) and τKW ←320

TokenGen(skS ,KW ), returns τKW to the adversary321

A.322

2Here, S |= (M,ρ) indicates S satisfies (M,ρ).

c) Otest(CT,KW ): A queries on a ciphertext CT 323

and a keyword KW , the challenger C runs algo- 324

rithms skS ← KeyGen(msk, S) and τKW ← 325

TokenGen(skS ,KW ). Returns the test result 1/0← 326

Test(CT, τKW ) to the adversary A. 327

d) Ork(S, (M ′, ρ′),KW ′): A queries on S, (M ′, ρ′) 328

and KW ′, where S does not satisfy (M ′, ρ′), the 329

challenger C executes skS ← KeyGen(MK,S) and 330

rk ← RKeyGen(skS , (M
′, ρ′),KW ′). Returns rk to 331

A. 332

e) Ore(CT, S, (M ′, ρ′),KW ′): A queries on an orig- 333

inal ciphertext CT under an access policy (M,ρ) 334

and keyword KW , attribute set S, access pol- 335

icy (M ′ρ′) and keyword KW ′, the challenger 336

C executes CT/⊥ ← ReEnc(rk, CT ), where 337

rk = RKeyGen(skS , (M
′, ρ′),KW ′), skS = 338

KeyGen(msk, S) and S satisfies (M,ρ). Returns the 339

result to adversary A. 340

f) Odec(S,CT ): A queries on an attribute set S 341

and ciphertext CT , the challenger C runs skS = 342

KeyGen(msk, S), m/⊥ ← Dec(skS , CT ). Return 343

the decryption result to the adversary A. 344

During Phase I, A is restrict not to make queries as: 345

• Osk(S) if S |= (M∗, ρ∗); 346

• Ork(S, (M ′, ρ′),KW ′), if S |= (M∗, ρ∗) and A has 347

queried Osk(S′), where S′ |= (M ′, ρ′); 348

4) Challenge. A sends messages (m0,m1) with equal 349

length and a challenge keyword KW ∗ to the challenger 350

C. C randomly choose a bit b ∈ {0, 1}, then computes 351

challenge ciphertext CT ∗ = Enc(mb, (M
∗, ρ∗),KW ∗), 352

and sends CT ∗ to A. 353

5) Phase II. A queries as in the phase I except: 354

• Osk(S), if S satisfies (M∗, ρ∗); 355

• Ork(S, (M ′, ρ′),KW ′) and Osk(S′), if S, S′ satisfy 356

(M∗, ρ∗), (M ′, ρ′) respectively; 357

• Ore(CT ∗, S, (M ′, ρ′),KW ′) and Osk(S′), if S, S′ 358

satisfy (M∗, ρ∗), (M ′, ρ′) respectively; 359

• Odec(S,CT ), if S satisfies (M∗, ρ∗) and CT is a 360

derivative3 of CT ∗. 361

6) Guess. A makes a guess b′ and wins if b′ = b. 362

The adversary’s advantage is defined as

AdvIND−CCA−OrA (λ) = |Pr[b′ = b]− 1

2
|.

Definition 3 (IND-CCA-Re). If there does not exist an 363

PPT adversary can win the game described below with a 364

non-negligible advantage, we say a CPAB-KSDS scheme 365

is indistinguishable chosen ciphertext secure at re-encrypted 366

ciphertext (IND-CCA-Re). 367

1) Init. A chooses the challenge policy (M∗, ρ∗) that is a 368

l∗ × n∗ matrix. 369

2) Setup. Challenger C executes Setup(λ,U) to retrieve 370

PK and SK, then forwards PK to the adversary A. 371

3The definition of derivative defined in [17].
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3) Phase I. A queries as below:372

a) Osk(S): Given an attribute set S, C executes the373

KeyGen(SK,S) to get the private key skS , and374

forwards skS to A.375

b) Otoken(S,KW ): On input an attribute set S and376

a keyword KW , challenger C runs algorithms377

KeyGen(SK,S) and TokenGen(skS ,KW ). Returns378

τKW to the adversary A.379

c) Otest(CT,KW ): On input a ciphertext CT and380

a keyword KW , the challenger C runs algo-381

rithms skS ← KeyGen(SK,S) and τKW ←382

TokenGen(skS ,KW ). Returns to A the test result383

of 1/0← Test(CT, τKW ).384

d) Ork(S, (M ′, ρ′),KW ′): On input an attribute set S,385

access policy (M ′, ρ′) and keyword KW ′, where386

S does not satisfy (M ′, ρ′), the challenger runs387

C runs skS ← KeyGen(SK,S) and rk ←388

RKeyGen(skS , (M
′, ρ′),KW ′). Returns rk to the389

adversary A.390

e) Odec(S,CT ): On input an attribute set S and ci-391

phertext CT , the challenger C runs the result of392

skS = KeyGen(SK,S), m/⊥ ← Dec(skS , CT ) to393

the adversary A.394

During Phase I, adversary A is restrict not to make the395

Osk(S) query, where S |= (M∗, ρ∗).396

4) Challenge. A sends two messages (m0,m1) with equal397

length and a challenge keyword KW ∗ to C. C chooses a398

random bit b ∈ {0, 1} and returns the challenge cipher-399

text CT ∗ = ReEnc(Enc(mb, (M,ρ),KW ), rk), where400

rk ← RKeyGen(skS , (M
∗, ρ∗),KW ∗), S |= (M,ρ) to401

A.402

5) Phase II. A makes queries same as phase I except:403

• Osk(S), if S |= (M∗, ρ∗);404

• Odec(S,CT ∗), S |= (M∗, ρ∗).405

6) Guess. A makes the guess b′ and wins if b′ = b.406

The adversary’s advantage is defined as

AdvIND−CCA−ReA (λ) = |Pr[b′ = b]− 1/2|.

In this game, since the adversary can make any re-407

encryption key query without restrictions, he can execute the408

re-encryption himself. Thus, the re-encryption query is useless.409

Definition 4 (IND-CKA). A CPAB-KSDS scheme is in-410

distinguishable chosen keyword secure (IND-CKA) if there411

doesn’t exist a PPT adversary A who can win the following412

game with a non-negligible advantage. Let oracle O1 =413

{Osk,Otoken,Otest,Ork,Odec}, where Osk, Otoken, Otest,414

Ork, Odec are the same as in IND-CCA-Or game.415

1) Setup. The challenger C runs Setup(λ, U) to get PK416

and MK. And then forwards PK to the adversary A.417

2) Phase I. A queries in O1.418

3) Challenge. A sends two keywords (KW0,KW1) with419

equal length, a challenge message m∗ and access policy420

(M∗, ρ∗) to C. The restriction is that A cannot has421

made any Otoken(S,KW ) queries, where S |= (M∗, ρ∗).422

Challenger C randomly choose a bit b ∈ {0, 1} and then 423

computes CT ∗ = Enc(m∗, (M∗, ρ∗),KWb). Returns 424

CT ∗ to A. 425

Note that, CT ∗ can also be CT ∗ = 426

ReEnc(Enc(m∗, (M,ρ),KW ′), rk), where 427

rk ← RKeyGen(skS , (M
∗, ρ∗),KWb), S |= (M,ρ). 428

4) Phase II. Like in the query phase I A continues querying 429

except: 430

• Otest(CT ∗,KW ); 431

• Otoken(S,KW ), where S |= (M∗, ρ∗). 432

5) Guess. A makes the guess b′ and wins if b′ = b. 433

A’s advantage is defined as

AdvIND−CKAA (λ) = |Pr[b′ = b]− 1/2|.

Remarks: As illustrated in [38], in the public key searchable 434

encryption setting, an adversary can conduct the statistical 435

attack. Detailly, an adversary can issue token queries to get 436

the search tokens and generate a keyword ciphertext for any 437

keywords he wants. Then the adversary can execute the Test 438

algorithm to test whether the keyword in the token equal to 439

the keyword in the ciphertext. To capture the statistical attack, 440

Zheng et al. [33] defined two types of keyword security: the 441

chosen keyword attack security and the keyword secrecy. The 442

chosen keyword attack security indicates that the adversary 443

cannot deduce any information about the keyword from the 444

keyword ciphertext. While the keyword secrecy means that 445

the probability of an adversary knowing the keyword from the 446

ciphertext and the search token is no more than the probability 447

of guessing a random element from the possible keyword 448

space. The key secrecy captures the fact that the keyword 449

embedded in the token cannot be protected since an adversary 450

can choose a keyword and generate a corresponding keyword 451

ciphertext. Then the adversary executes the Test algorithm 452

to check whether the keyword embedded in the token equals 453

to the keyword in the keyword ciphertext. In our scheme, we 454

adopt the chosen keyword attack security definition of [33]. 455

In our IND-CKA definition, though the adversary can choose 456

a keyword KW as he likes and gets the corresponding token 457

τKW via the Otoken(S,KW ) query. However, the restriction 458

is that S does not satisfy (M∗, ρ∗). Whenever the adversary 459

executes the Test(τKW , CT ∗) algorithm, the algorithm will 460

return 0 since S does not satisfy (M∗, ρ∗). Thus, the adversary 461

cannot gain any extra information about the keyword in the 462

keyword ciphertext through the Test algorithm that will lead 463

to the failure of the statistical attack. 464

A CPAB-KSDS scheme is said to be chosen cipher- 465

text and chosen keyword secure if AdvIND−CCA−OrA (λ), 466

AdvIND−CCA−ReA (λ) and AdvIND−CKAA (λ) are negligible. 467

III. PRELIMINARIES 468

A. Bilinear Map 469

G and GT are two multiplicative cyclic groups of prime 470

order p, e : G×G→ GT , A tuple (G,GT , p, e) is a bilinear 471

map tuple, if for ∀µ, ν ∈ G, r, s ∈ Z∗p 472

1) e(µr, νs) = e(µ, ν)rs; 473
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2) e(µ, ν) 6= 1.474

3) e(µ, ν) can be computed efficiently.475

B. q-BDHE Assumption476

G is a group of prime order p. Randomly choose477

g, ν, s ∈ Zp. Denote gν
i

as gi. Given a vector ~v =478

(g, gs, g1, · · · , gq, gq+2, · · · , g2q) ∈ G2q+1, the adversary can-479

not distinguish e(g, g)ν
q+1s ∈ GT from a random element in480

GT .481

Formally, the probability :

| Pr[A(~v, T = e(g, g)ν
q+1s)]− Pr[A(~v, T = R)] |,

where R r← GT , is negligible for all PPT adversaryA, then the482

decisional q−Bilinear Diffie-Hellman Exponent assumption483

(q-BDHE) [4] holds.484

C. DL Assumption485

G is a group of prime order p. Randomly choose g, z, h ∈486

G, r1, r2 ∈ Zp. Given a vector ~v = (g, z, h, zr1 , gr2) ∈ G5,487

the adversary is hard to distinguish hr1+r2 ∈ G from a random488

element in G.489

Formally, the probability:

| Pr[A(~v, T = hr1+r2)]− Pr[A(~v, T = R)] |,

where R r← G, is negligible for all PPT adversaries A, the490

following then the decisional linear assumption (DL) [33]491

holds.492

IV. CPAB-KSDS SYSTEM493

A. Challenges and Our Techniques494

Here we demonstrate why a simple combination of an495

AB-PRE scheme and attribute-based keyword search scheme496

(AB-KS) does not solve our design challenge. Assume497

the combined CPAB-KSDS ciphertext is CCPAB−KSDS =498

(CAB−PRE , CAB−KS), where CAB−PRE is an AB-PRE ci-499

phertext and CAB−KS is an AB-KS ciphertext, an adver-500

sary may issue decryption oracle of a manipulated cipher-501

text (CAB−PRE , C
′
AB−KS) to get the underlying plaintext.502

Another problem is that it is vulnerable to the collusion503

attack [19]. The proxy and the delegatee can collude to reveal504

the delegator’s private key. Suppose the first part delegator’s505

private is K = gαf t. If we set the re-encryption key as506

rk = KH(δ), where δ is an randomly chosen element and507

encrypted with the delegatee’s attribute set S, the delegatee508

can first recover δ with his own private and further get the509

delegator’s private key part K.510

In our construction, we utilize the ciphertext-policy511

attribute-based encryption scheme [4] as the basic component512

since it supports any monotonic access policy and achieves the513

CCA security. To overcome the first issue, we bind the AB-514

PRE ciphertext and the AB-KS ciphertext tightly via a same515

random element. In such a manner, if one part of the CPAB-516

KSDS ciphertext is changed, the another part will update517

accordingly. Furthermore, in the decryption algorithm, the518

decryptor first checks the validity of the ciphertext and then519

conducts the decryption. Regarding the collusion attack issue,520

we introduce a random value to randomize the delegator’s 521

private key. In the detailed construction, which will be shown 522

in the following subsection, the re-encryption is set to be 523

rk = KH(δ) ·Qθ, where Q and θ are randomly chosen. Thus 524

only with the value of δ and rk, the delegatee colludes with the 525

proxy cannot reveal the private key part K. When it is needed 526

to remove the random value Qθ in the decryption algorithm, 527

we leverage the bilinear property of the bilinear pairing to get 528

rid of it. 529

B. Proposed Construction 530

In our scheme, ciphertexts are encrypted with an access 531

policy and a keyword, and the private key is connected with 532

an attribute set S. U is the attribute universe whose size is 533

polynomial of λ. KW ∈ {0, 1}∗ denotes a keyword. The 534

following describes our proposed CPAB-KSDS scheme. 535

1) Setup(λ,U): Chooses a bilinear map tuple 536

(p, g,G,GT , e), and randomly select α, β, a, b, c ∈ Z∗p , 537

f, g̃ ∈ G, compute f1 = gc, f2 = gb, Q = gβ . For 538

∀i, 1 6 i 6 |U |, choose h1, · · · , h|U | ∈ G. Choose 539

collision-resistant hash functions: H1 : {0, 1}∗ → G, 540

H2 : GT → {0, 1}∗, H3 : {0, 1}∗ → Z∗p , 541

H4 : {0, 1}∗ × GT → Z∗p . Choose a CCA-secure 542

symmetric key encryption SY = (S.Enc, S.Dec). 543

Output msk = (gα, a, b) and mpk = 544

(e(g, g)α, ga, g̃, f, f1, f2, Q,H1, H2, H3, H4, h1, · · · , 545

h|U |, SY ). 546

2) KeyGen(msk, S): Randomly choose t, r ∈ Z∗p and
compute the secret key skS as

K = gαf t, L = gt,

V = g(ac−r)/b, Y = gr, Z = g̃r,

∀x ∈ S, {Kx = htx, Yx = H1(x)r}.

Note that, V can be computed as V = f
a/b
1 /gr/b. The 547

secret key skS implicitly contains S. 548

3) Enc(m, (M,ρ),KW ): Choose a random element R ∈
GT , then compute s = H4(m,R). Choose two ran-
dom vectors ~v = (s, k2, · · · , kn) ∈ Z∗p

n, ~η =
(s2, kn+1, · · · , k2n−1) ∈ Z∗p

n, where s2, k2 · · · , k2n−1

are randomly chosen from Z∗p . For i = 1 to l, compute
λi = ~v ·Mi and ϕi = ~η ·Mi, where Mi is the vector
related to the i-th row of M . Randomly choose s1 ∈ Z∗p
and compute

C0 = m⊕H2(R), C = R · e(g, g)αs, C ′ = gs,

C ′′ = Qs, ∀1 6 i 6 l, Ci = fλih−sρ(i),

W = fs11 , W0 = ga(s1+s2)f
s1H2(KW )
2 ,

W1 = fs22 , D = gs2 ,

∀1 6 i 6 l, Ei = g̃ϕiH1(ρ(i))−s2 ,

E = H1(C0, C, C
′, C ′′, D, {Ci, Ei}i∈[1,l],W,W0,W1)s.
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Output the ciphertext549

CT = (C0, C, C
′, C ′′, D, {Ci, Ei}i∈[1,l],W,W0,W1, E).550

Note that, CT implicitly includes (M,ρ).551

4) TokenGen(skS ,KW
′): Choose a random element γ ∈

Z∗p and compute

τ1 =
(
gaf

H1(KW ′)
2

)γ
, τ2 = fγ1 ,

τ3 = V γ , Y ′ = Y γ Z ′ = Zγ ,

Then, for each x ∈ S, compute Yx
′ = Yx

γ . Set the552

trapdoor as τ = (τ1, τ2, τ3, Y
′, Z ′, {Yx′}∀x∈S).553

5) Test(CT, τ): Input a ciphertext CT =
(C,C ′, C ′′, D, {Ci, Ei}i∈[1,l],W,W0,W1, E) and a
search token τ = (τ1, τ2, τ3, Y

′, Z ′, {Yx′}∀x∈S). If S
associated with the search token τ does not satisfy
(M,ρ) in CT , the algorithm returns ⊥. Otherwise, let
I ⊆ {1, · · · , l} be a set of indices, such that for all
i ∈ I , ρ(i) ∈ S and Σi∈IωiMi = (1, 0, · · · , 0). Denote
∆ = {x : ∃i ∈ I, ρ(i) = x}, compute

F = e(Y ′Z ′, D)/

(∏
i∈I

(e(Y ′, Ei) · e(D,Yx′))ωi
)
.

The algorithm returns 1, means KW = KW ′, if554

e(W, τ1)e(W1, τ3)F = e(W0, τ2). Otherwise returns 0,555

means KW 6= KW ′.556

Note that, if CT is a re-encrypted ciphertext, the557

algorithm first computes558

F ′ = e(Y ′Z ′, D′)/

(∏
i∈I

(e(Y ′, Ei
′) · e(D′, Yx′))ωi

)
=559

e(g, g)rs2
′γ . And then verifies whether560

e(W ′, τ1)e(W1
′, τ3)F ′

?
= e(W0

′, τ2). If the equation561

holds, outputs 1, means KW = KW ′, otherwise outputs562

0.563

6) RKeyGen(skS , (M
′, ρ′),KW ′): Choose random ele-

ments δ ∈ {0, 1}∗ and θ ∈ Z∗p . Compute

rk1 = KH3(δ)Qθ, rk2 = gθ,

rk3 = LH3(δ), ∀x ∈ S, rk4,x = KH3(δ)
x .

Randomly choose R′ ∈ GT , compute s′ = H4(δ,R′).
Choose two random vectors ~v′ = (s′, k2

′, · · · , kn′) ∈
Z∗p

n, ~η′ = (s2
′, kn+1

′, · · · , k2n−1
′) ∈ Z∗p

n, where
s2
′, k2

′, · · · , k2n−1
′ are randomly chosen from Z∗p . For

i = 1 to l, compute λi′ = ~v′ ·Mi
′ and and ϕi′ = ~η′ ·Mi

′,
where Mi

′ is the vector related to the i-th row of M ′.
Randomly choose s1

′ ∈ Z∗p and compute

r̃k5 = δ ⊕H2(R′), rk5 = R′ · e(g, g)αs
′
,

rk6 = gs
′
, ∀1 6 i 6 l, rk7,i = fλi

′
h−s

′

ρ(i),

W ′ = fs1
′

1 , W0
′ = ga(s1

′+s2
′)f

s1
′H1(KW ′)

2 ,

W1
′ = fs2

′

2 , D′ = gs2
′
,

∀1 6 i 6 l, Ei
′ = g̃ϕi

′
H1(ρ(i))−s2

′
,

E′ = H1(r̃k5, rk5, rk6, D
′, {rk7,i, Ei

′}i∈[1,l],W
′,W0

′,W1
′)s
′
.

Set the re-encryption key as rk = 564

(rk1, rk2, rk3, {rk4,x}x∈S , r̃k5, rk5, rk6, D
′, {rk7,i, 565

Ei
′}i∈[1,l],W

′,W0
′,W1

′, E′). 566

7) ReEnc(CT, rk): On input an original ciphertext 567

CT and a re-encryption key rk, compute 568

t = H1(C0, C, C
′, C ′′, D, {Ci, Ei}i∈[1,l],W,W0,W1), 569

and check whether the following equalities hold: 570

e(g,E)
?
= e(C ′, t), (1)

e(C ′, Q)
?
= e(g, C ′′), (2)

∀1 6 i 6 l, e(g, Ci)
?
= e(g, fλi)e(C ′, hρ(i))

−1. (3)

If one of them fails, the algorithm outputs ⊥. Otherwise, 571

it continues. 572

If S does not satisfy (M,ρ) in CT , it output ⊥. Else
let I ⊆ {1, · · · , l} be a set of indices, such that for all
i ∈ I , ρ(i) ∈ S and Σi∈IωiMi = (1, 0, · · · , 0). Denote
∆ = {x : ∃i ∈ I, ρ(i) = x}. Compute

Γ =
e(rk1, C

′)

e(rk2, C ′′) ·
∏
i∈I

e(Ci, rk3)ωi · e(C ′,
∏
x∈∆

rk4,x)ωi
.

Compute CT1 = S.Enc(CT ||Γ, δ), CT2 = 573

(r̃k5, rk5, rk6, D
′, {rk7,i, Ei

′}i∈[1,l],W
′,W0

′,W1
′, E′). 574

Output the re-encrypted ciphertext CT = (CT1, CT2). 575

Note that, via the ReEnc algorithm, a new keyword 576

KW ′ is embedded in the re-encrypted ciphertext part of 577

W ′0. In such a manner, the keyword in the re-encrypted ci- 578

phertext was updated. For example, the original ciphertext 579

CT is encrypted with the keyword KW . If the delegator 580

wants to update the keyword KW to KW ′ in the re- 581

encryption phase, he can issue a re-encryption key rk 582

with the keyword KW ′ in the RKeyGen algorithm. 583

When the cloud server re-encrypts the original ciphertext 584

via the ReEnc(CT, rk) algorithm, the new keyword is 585

embedded in W ′0 part of the re-encrypted ciphertext. 586

8) Dec(skS , CT ): 587

(1) CT is an original ciphertext. 588

a) If one of them (1)− (3) fails, the algorithm outputs ⊥. 589

Otherwise, it continues. 590

b) If S does not satisfy (M,ρ) in CT , it output ⊥. Else
let I ⊆ {1, · · · , l} be an index set, such that for all
i ∈ I , ρ(i) ∈ S and Σi∈IωiMi = (1, 0, · · · , 0). Define
∆ = {x : ∃i ∈ I, ρ(i) = x}. Compute

e(K,C ′)∏
i∈I

e(Ci, L)ωi · e(C ′,
∏
x∈∆

Kx)ωi
= e(g, g)αs.

Compute R = C/e(g, g)αs, m = C0⊕H2(R) and s = 591

H4(m,R). Output m if C ′ = gs, C ′′ = Qs and E = 592

H1(C0, C, C
′, C ′′, D, {Ci, Ei}i∈[1,l],W,W0,W1)s. 593

Otherwise output ⊥. 594

(2) CT is a re-encrypted ciphertext. 595

a) Phase CT2 = (r̃k5, rk5, rk6, D
′, {rk7,i, Ei

′}i∈[1,l], 596

W ′,W0
′,W1

′, E′), compute t̃ = H1(r̃k5, rk5, 597
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rk6, D
′, {rk7,i, Ei

′}i∈[1,l],W
′,W0

′,W1
′). For ∀1 6598

i 6 l, verify599

e(g,E′)
?
= e(rk6, t̃), (4)

e(g, rk7,i)
?
= e(g, fλi

′
)e(rk6, hρ(i))

−1. (5)

Check whether equations (4)− (5) hold. If not, output600

⊥. Otherwise proceed.601

b) If S associated with sk does not satisfy (M,ρ) in CT ,
it output ⊥. Else let I ⊆ {1, · · · , l} be a set of indices,
such that for all i ∈ I , ρ(i) ∈ S and Σi∈IωiMi =
(1, 0, · · · , 0). Define ∆ = {x : ∃i ∈ I, ρ(i) = x}.
Compute

e(K, rk6)∏
i∈I

e(rk7,i, L)ωi · e(rk6,
∏
x∈∆

Kx)ωi
= e(g, g)αs

′
.

Next, compute R′ = rk5/e(g, g)αs
′
, δ = r̃k5⊕H2(R′)602

and s′ = H4(δ,R′). Output δ if rk6 = gs
′

and E′ =603

H1(r̃k5, rk5, rk6, D
′, {rk7,i, Ei

′}i∈[1,l],W
′,W0

′,604

W1
′)s
′
. Otherwise output ⊥.605

c) Compute CT ||Γ = S.Dec(CT1, δ), and606

m = C/ΓH3(δ)−1

.607

Consistency. The consistency is verified as:608

1) For the search token, in the Test algorithm we have

F = e(Y ′Z ′, D)/

(∏
i∈I

(e(Y ′, Ei) · e(D,Yx′))ωi
)

=
e(grγ · g̃rγ , gs2)∏

i∈I
(e(grγ , g̃ϕiH1(ρ(i))−s2) · e(gs2 , H1(x)rγ))ωi

=
e(grγ g̃rγ , gs2)

e(grγ , g̃)
∑
i∈I ϕiωi

=
e(grγ g̃rγ , gs2)

e(grγ , g̃)s2

= e(g, g)rs2γ .

Further, if KW = KW ′, it can be verified that

e(W, τ1)e(W1, τ3)F

=e(fs11 , (gaf
H1(KW ′)
2 )γ)e(fs22 , gγ(ac−r)/b)e(g, g)rs2γ

=e(gcs1 , (gagbH1(KW ′))γ)e(gs2 , gγac)

=e(gcγ , ga(s1+s2)f
s1H1(KW ′)
2 )

=e(W0, τ2)

Thus, the consistency of keyword can be verified. Note609

that, if CT is a re-encrypted ciphertext, it can be verified610

in the same manner.611

2) For an original ciphertext, we have

e(K,C ′)∏
i∈I

e(Ci, L)ωi · e(C ′,
∏
x∈∆

Kx)ωi

=
e(gαf t, gs)∏

i∈I
e(fλih−sρ(i), g

t)ωi · e(gs,
∏
x∈∆

htx)ωi

=
e(gαf t, gs)

e(f, gt)
∑
i∈I λiωi

=e(g, g)αs

3) For a re-encrypted ciphertext, we have

Γ =
e(rk1, C

′)

e(rk2, C ′′) ·
∏
i∈I

e(Ci, rk3)ωi · e(C ′,
∏
x∈∆

rk4,x)ωi

=
e(KH3(δ)Qθ, gs)

e(gθ, Qs)
∏
i∈I

e(fλih−sρ(i), L
H3(δ))ωie(gs,

∏
x∈∆

K
H3(δ)
x )ωi

= e(g, g)αsH3(δ)

Later, In the Dec algorithm for a re-encrypted ciphertext, 612

δ can be computed in the same way as above. Then, it 613

can compute m = C/ΓH3(δ)−1

. 614

C. Security Proof 615

Now we demonstrate the proof of chosen ciphertext and 616

chosen keyword security for our CPAB-KSDS scheme. For 617

simplicity, we assume H1, H2, H3 are TCR hash functions, 618

SY = (S.Enc, S.Dec) is a symmetric encryption. 619

Theorem 1. CPAB-KSDS scheme is IND-CCA-Or secure if 620

the decisional |U |-BDHE assumption holds. 621

Proof. Suppose a PPT adversary A can attack the IND- 622

CCA-Or security, we could build a simulator B to break 623

the |U |-BDHE assumption. Given a |U |-BDHE sample (~y = 624

(g, gs, g1, · · · , g|U |, g|U |+2, · · · , g2|U |), T ) ∈ G2q+1×GT , the 625

task for B is to determine if T ?
= e(g, g)ν

|U|+1s. 626

Initially, B maintains the following empty values. 627

• sklist: stores tuples of (S, sks). 628

• rklist: stores tuples of (S, (M ′, ρ′),KW ′, rk, flag), 629

where flag ∈ {true, false}, where flag = ture indi- 630

cates rk is a valid re-encryption key, and flag = false 631

indicates rk is random. 632

B controls random oracles H1, H2, H4 as follows. B 633

maintains hash lists H list
1 , H list

2 , H list
4 which are initially 634

empty. 635

• H list
1 : A queries to H1, if (C0, C, C

′, C ′′, D, {Ci, 636

Ei}i∈[1,l],W,W0,W1, σ, g
σ) exists in H list

1 , returns gσ . 637

Otherwise, choose a random σ ∈ Z∗p and returns gσ as the 638

answer. Adds (C0, C, C
′, C ′′, D, {Ci, Ei}i∈[1,l],W,W0, 639

W1, σ, g
σ) to H list

1 . 640

• H list
2 : A queries to H2, if (R,φ) exists in H list

2 , returns 641

φ. Otherwise, choose a random φ ∈ {0, 1}∗ as the answer. 642

Adds (R,φ) to H list
2 . 643



1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2963978, IEEE
Transactions on Dependable and Secure Computing

• H list
4 : A queries to H4, if (m,R, s) exists in H list

4 ,644

returns s. Otherwise, choose a random s ∈ Z∗p as the645

answer. Adds (m,R, s) to H list
4 .646

1) Init. The challenge A outputs an access policy (M∗, ρ∗)647

he wants to challenge. M∗ is an l∗ × n∗ matrix, where648

n∗ ≤ |U |.649

2) Setup. Simulator B chooses a random α′ ∈ Zp and sets650

f = gν , e(g, g)α = e(g, g)α
′ · e(g1, g|U |). This implicitly651

sets α = α′ + ν|U |+1. For ∀x, 1 ≤ x ≤ |U |. Choose a652

random value zx ∈ Zp. If there exists an i ∈ [1, l] such653

that ρ∗(i) = x, then sets hx = gzxg
M∗i,1
1 ·gM

∗
i,2

2 · · · gM
∗
i,n∗

n∗ .654

Otherwise sets hx = gzx . Next, B randomly choose655

β, a, b, c ∈ Z∗p , g̃ ∈ G and a symmetric encryption656

SY = (S.Enc, S.Dec). Computes f1 = gc, f2 = gb,657

Q = gβ . The master secret key is (gα, a, b), whereby gα658

is unknown to B.659

3) Phase I.660

a) Osk(S): B first searches sklist, if (S, skS) exists,661

returns skS . Otherwise,662

• if S |= (M∗, ρ∗), B aborts and outputs ⊥.663

• Otherwise, B randomly choose µ, r ∈ Z∗p . Finds a664

vector ~ω = (ω1, · · · , ωn∗) ∈ Z∗p such that ω1 = −1665

and for all i where ρ∗(i) ∈ S, ~ω · M∗i = 0.666

By the definition of LSSS [37], such ~ω must667

exists if S does not satisfy (M∗, ρ∗). Computes668

L = gµ
∏n∗

i=1(g|U |+1−i)
ωi , gt. This implicitly sets669

t = µ + ω1ν
|U | + ω2ν

|U |−1 + · · · + ωn∗ν
|U |+1−n∗ .670

By this setting, K = gαf t = gα
′+ν|U|+1 ·671

gν(µ+ω1ν
|U|+ω2ν

|U|−1+···+ωn∗ν|U|+1−n∗ ) =672

gα
′
gµν

∏n∗

i=2(g|U |+2−i)
ωi .673

For each x ∈ S, if there doesn’t exist i so that674

ρ∗(i) = x, B computes Kx = Lzx . Otherwise,675

suppose ρ∗(i) = x, B calculates Kx as676

Kx = Lzx
n∗∏
j=1

gµ n∗∏
k = 1
k 6= j

(g|U |+1+j−k)ωk


Mi,j

.

Next, B can compute V , Y , Z and Yx as he knows677

a, b, c, r. Finally, B adds (S, skS) to sklist.678

b) Otoken(S,KW ): B first searches sklist, if (S, skS)679

exists, using skS to generate τKW via the TokenGen680

algorithm. If such an entry doesn’t exist, B queries681

Osk(S) to get skS and then generates τKW . Adds682

(S, skS) to sklist.683

c) Otest(CT,KW ): B first queries Otoken to get a search684

token τKW . Then runs Test(CT, τ) and returns the685

result to A.686

d) Ork(S, (M ′, ρ′),KW ′): B first searches rklist, if687

(S, (M ′, ρ′),KW ′, rk, ∗) exists, where ∗ denotes the688

wildcard, outputs rk. Otherwise proceeds,689

• If S |= (M∗, ρ∗) and (S′, skS′) in sklist, where690

S′ |= (M ′, ρ′), B aborts and outputs ⊥. Otherwise,691

• If S |= (M∗, ρ∗) but there is no tuple (S′, skS′) 692

in sklist, where S′ |= (M ′, ρ′), B randomly 693

selects values for each element of rk. Adds 694

(S, (M ′, ρ′),KW ′, rk, false) to rklist list. Other- 695

wise, 696

• B first queries Osk(S) to get skS and then gener- 697

ates rk using skS via RKeyGen algorithm. Adds 698

(S, skS) and (S, (M ′, ρ′),KW ′, rk, true) to sklist 699

and rklist respectively. 700

e) Ore(CT, S, (M ′, ρ′),KW ′): If S |= (M∗, ρ∗) and 701

there is a tuple (S′, skS′) in sklist, where S′ |= 702

(M ′, ρ′), B aborts and outputs ⊥. Else if the equa- 703

tions (1) − (3) do not hold, outputs ⊥. Otherwise 704

if there is a tuple (S, (M ′, ρ′),KW ′, rk, ∗) in rklist, 705

re-encrypts CT with rk. Otherwise, B first issues 706

Ork(S, (M ′, ρ′),KW ′) to get rk. Next, B re-encrypts 707

CT with rk, then adds (S, (M ′, ρ′),KW ′, rk, 1) to 708

rklist. 709

f) Odec(S,CT ): B proceeds, 710

• If CT is a original ciphertext, B first verifies whether 711

(1) − (3) hold, if not, outputs ⊥. Otherwise, B 712

checks whether there exists tuples (R,φ) in H list
2 713

and (m,R, s) in H list
4 , such that C0 = m ⊕ φ, 714

C ′ = gs. If yes, returns m to A. Otherwise outputs 715

⊥. 716

• If CT is a re-encrypted ciphertext, B first verifies 717

equations (4)− (5), if these verification fail, outputs 718

⊥. Otherwise, B checks whether there exists tuples 719

(R′, φ′) in H list
2 and (δ,R′, s′) in H list

4 , such that 720

r̃k5 = δ ⊕ φ′, rk6 = gs
′
. If yes, returns δ to A. 721

Otherwise outputs ⊥. Finally B computes CT ||Γ = 722

S.Dec(CT1, δ), and m = C/ΓH3(δ)−1

. Returns m 723

to A. 724

4) Challenge. A selects two equal length message (m0,m1) 725

and a challenge keyword KW ∗. Challenger C randomly 726

choose a bit b ∈ {0, 1} and constructs C∗0 = mb ⊕ 727

H2(R∗), C∗ = R∗ · T · e(gs, gα′), C ′∗ = gs and 728

C ′′
∗

= (gs)
β . 729

Then, B chooses random values y′2, · · · , y′n∗ ∈ Zp. For
i = 1, · · · , l∗, computes

C∗i =

 ∏
j=1,··· ,n∗

(gν)y
′
jM
∗
i,j

 (gs)−zρ∗(i) .

Randomly choose s1, s2, k2, · · · , k2n−1 and computes 730

W ∗ = fs11 , W ∗0 = ga(s1+s2)f
s1H2(KW∗)
2 , W ∗1 = fs22 , 731

D∗ = gs2 and ∀1 6 i 6 l∗, E∗i = g̃ϕiH1(ρ∗(i))−s2 . 732

Next,B computes gσ
∗

= H1(C∗0 , C
∗, C ′

∗
, C ′′

∗
, D∗, 733

{C∗i , E∗i }i∈[1,l∗],W
∗,W ∗0 ,W

∗
1 ), E∗ = (gs)

σ∗ . 734

Note that, by this setting, there exists an tuple (C∗0 , C
∗, 735

C ′
∗
, C ′′

∗
, D∗, {C∗i , E∗i }i∈[1,l∗],W

∗,W ∗0 ,W
∗
1 , σ

∗, gσ
∗
) 736

in H list
1 . If there no such tuple, adds it to H list

1 . 737

If T = e(g, g)ν
|U|+1s, we have CT ∗ = R∗ · T · 738

e(gs, gα
′
) = R∗·e(g, g)ν

|U|+1s·e(gs, gα′) = R∗·e(g, g)sα 739

that is simulated perfectly. 740
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5) Phase II. Other than the restrictions in the IND-CCA-Or741

game, A queries as it does phase I742

6) Guess. A makes the guess b′ and wins if b′ = b.743

When T = e(g, g)ν
|U|+1s, B simulators perfectly if the744

simulation does not abort. If T is a random element in GT ,745

Then CT ∗ is a random ciphertext, and the value b reveals746

nothing about CT ∗. The probability of Pr[b′ = b] = 1
2 . Thus,747

B can solve the decisional |U |-BDHE assumption with non-748

negligible advantage.749

Theorem 2. Our proposed CPAB-KSDS scheme is IND-CCA-750

Re secure if the decisional |U |-BDHE assumption holds.751

Proof. The Init, Setup and query Phase I is similar to these752

steps in the proof of Theorem 1.753

1) Challenge. A selects two message (m0,m1) with equal754

length and a challenge keyword KW ∗. Challenger C755

chooses a random bit b ∈ {0, 1} and constructs as756

follows.757

a) Generate a secret key skS and a re-encryption key rk,758

where rk ← RKeyGen(skS , (M
∗, ρ∗),KW ∗).759

b) B generates an original ciphertext CT ←760

Enc(mb, (M,ρ),KW ) using the same way as761

in Challenge phase in the proof of Theorem 1.762

c) Re-encrypts CT with re-encryption key rk to get chal-763

lenge ciphertext CT ∗ via CT ∗ ← ReEnc(CT, rk).764

d) Outputs the challenge ciphertext CT ∗ to A.765

If T = e(g, g)ν
|U|+1s, CT ∗ is a valid challenge ciphertext.766

If T is a random value in GT , the challenge ciphertext767

CT ∗ is independent of b from the adversary’s perspective.768

2) Phase II. Other than the restrictions in the IND-CCA-Re769

game, A queries as it does phase I770

3) Guess. A makes the guess b′ and wins if b′ = b.771

When T is randomly chosen in GT , Then CT ∗ is a random772

ciphertext, and the value b reveals nothing about CT ∗. The773

probability of Pr[b′ = b] = 1
2 . Therefore, B can solve the774

decisional |U |-BDHE assumption with non-negligible advan-775

tage.776

Theorem 3. Our proposed CPAB-KSDS scheme is IND-CKA777

secure if the DL assumption holds.778

Proof. Suppose there exists a PPT adversary A can break the779

IND-CKA security, we built a simulator B to break the DL780

assumption. Given a DL sample (~y = (g, z, h, zr1 , gr2 , T ) ∈781

G6, the task for B’s is to determine if T ?
= hr1+r2 .782

B controls random oracle H1 as follows. B maintains hash783

lists H list
1 which is initially empty.784

• H list
1 : A queries to H1, if (x, ∗, σx, gσx) exists in H list

1 ,785

returns gσx . Otherwise, choose a random σx ∈ Z∗p and786

returns gσx as the answer. Adds (x, ∗, σx, gσx) to H list
1 .787

1) Setup. B randomly choose α, β, d, υ ∈ Z∗p ,788

f, h1, · · · , h|U | ∈ G. Sets f1 = z = gc, h = ga,789

gb = zd, g̃ = gυ and Q = gβ for some unknown790

a, b, c. This implicitly sets b = cd. Chooses a symmetric791

encryption SY = (S.Enc, S.Dec). The master secret792

key is msk = (gα, a, b), where a, b are unknown to B.793

2) Phase I. 794

a) Osk(S): B chooses random values t, r′ ∈ Z∗p and 795

computes the secret key as K = gαf t, = gt, V = 796

h1/d/gr
′
, Y = (zd)r

′
, Z = (zd)υr

′
. For each x ∈ S, 797

B first queries (x) to H1 and gets σx and gσx . Then B 798

computes ∀x ∈ S, {Kx = htx, Yx = (zd)σxr
′}. Note 799

that, K, L, Kx are generated the same as the real 800

algorithm. Denote r , br′, we have V = h1/d/gr
′

= 801

ga/d/gr/b = gac/b/gr/b = g(ac−r)/b, Y = (zd)r
′

= 802

(gb)r
′

= gr, Z = (zd)υr
′

= (gb)υr
′

= g̃r and 803

Yx = (zd)σxr
′

= (gb)σxr
′

= H1(x)r. Thus,skS is a 804

valid secret key for S. 805

b) Otoken(S,KW ): B first queries Osk(S) to get skS and 806

then generates τKW . 807

c) Otest(CT,KW ): B first queries Otoken to get a search 808

token τKW . Then runs Test(CT, τ) and returns the 809

result to A. 810

d) Ork(S, (M ′, ρ′),KW ′): B first queries 811

Osk(S) to get a private key skS . Then runs 812

RKeyGen(skS , (M
′, ρ′),KW ′) and returns the 813

result to A. 814

e) Odec(S,CT ): B uses α to generate a corresponding 815

skS and returns the decryption Dec(skS , CT ) result 816

to A. 817

3) Challenge. A chooses two keywords (KW0,KW1) with 818

equal length, a challenge message m∗ and access policy 819

(M∗, ρ∗), where M∗ is a l∗ × n∗ matrix. If A has made 820

a query Otoken(S,KW ), S |= (M∗, ρ∗), B aborts and 821

outputs ⊥. Otherwise, B chooses a random bit b ∈ {0, 1}, 822

s ∈ Z∗p . Constructs C∗0 = m∗ ⊕ H2(R∗), C∗ = R∗ · 823

e(g, g)αs, C ′∗ = gs and C ′′
∗

= Qs. For i = 1, · · · , l∗, 824

computes C∗i = fλih−sρ∗(i). Computes W ∗ = zr1 , 825

W ∗0 = T · zr1dH2(KWb), W ∗1 = zr2d, D∗ = gr2 and 826

∀1 6 i 6 l∗, E∗i = g̃ϕigr2σρ∗(i) . Next,B computes gσ
∗

= 827

H1(C∗0 , C
∗, C ′

∗
, C ′′

∗
, D∗, {C∗i , E∗i }i∈[1,l∗],W

∗,W ∗0 , 828

W ∗1 ), E∗ = gsσ
∗
. 829

If T = hr1+r2 , we have W ∗0 = T ·zr1dH2(KWb) = hr1+r2 · 830

zr1dH2(KWb) = ga(r1+r2)fs1H2(KWb). Thus, CT ∗ is a 831

correctly generated challenge ciphertext. 832

Note that, CT ∗ can also be CT ∗ = ReEnc(Enc(m∗, 833

(M,ρ),KW ′), rk), where rk ← RKeyGen(skS , 834

(M∗, ρ∗),KWb), S |= (M,ρ). 835

4) Phase II. A makes queries as in phase I other than the 836

restrictions in the IND-CKA game. 837

5) Guess. A makes the guess b′ and wins if b′ = b. 838

When T = hr1+r2 , B simulators perfectly if the simulation 839

does not abort. If T is randomly chosen in G, KWb is hidden 840

from the adversary and b reveal nothing about CT ∗. The 841

probability of Pr[b′ = b] = 1
2 . Therefore, B can solve the 842

DL assumption with non-negligible advantage. 843

V. PERFORMANCE 844

To evaluate the performance, our scheme is compared with 845

the recently proposed search encryption scheme [30], attribute 846

based keyword search schemes [34], [35] and KPAB-PRE-KS 847
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TABLE I
FUNCTIONALITY COMPARISON WITH [30], [34], [35], [36].

Schemes Keyword Data Access Policy Without interactive private key or
Search? Sharing? with PKG? public key setting?

[30] ! # # ! private key

[34] ! # Ciphertext policy ! public key

[35] ! # Ciphertext policy ! public key

[36] ! ! Key policy # public key

Ours ! ! Ciphertext policy ! public key

TABLE II
COMPUTATION COMPARISON WITH [30], [34], [35], [36].

Schemes Enc TokenGen Test ReEnc Dec(Or) Dec(Re)

[30] O(λ2) ·m O(λ2) ·m O(λ) ·m ⊥ ⊥ ⊥

[34] O(l) · e+O(1) · p O(|S|) · e O(|S|) · (e+ p) ⊥ ⊥ ⊥

[35] O(l) · e O(|S|) · e O(|S|) · p+O(1) · e ⊥ ⊥ ⊥

[36] O(|S|) · e+O(1) · p O(l) · e O(|S|) · e+O(1) · p O(|S|) · e+O(1) · p O(|S|) · e+O(1) · p O(|S|) · e+O(1) · p

Ours O(l) · e+O(1) · p O(|S|) · e O(|S|) · (e+ p) O(|M |) · (e+ p) O(|M |) · (e+ p) O(|M |) · (e+ p)

TABLE III
IMPLEMENTATION TIME.

Algorithms KeyGen Enc TokenGen Test RKenGen ReEnc Dec(Or) Dec(Re)
(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

|S| = 5 12.954 40.003 7.232 16.171 51.667 33.914 9.463 31.640

|S| = 10 19.934 67.811 10.515 24.083 86.230 61.216 17.682 58.685

|S| = 15 26.146 98.433 13.810 32.006 120.610 88.598 25.720 87.315

|S| = 20 33.624 125.362 17.106 39.826 157.500 117.622 34.438 116.067

|S| = 25 40.479 152.616 20.392 47.753 191.435 142.800 42.745 141.702

|S| = 30 46.616 181.117 23.673 55.647 226.063 171.027 50.708 169.145

scheme [36]. We have made a thorough comparison based848

on the following aspects: functionality, theoretical analysis849

efficiency and implementation time.850

A. Functionality Comparison851

Table I summarizes that our scheme supports the data shar-852

ing and keyword search functionality whereas schemes [30],853

[34], [35] cannot provide the data sharing property. Moreover,854

the scheme [30] works in the private key setting while [34],855

[35], [36] and our scheme work in the public key setting. When856

compared with the KPAB-PRE-KS scheme [36], it requires857

the delegator to interactive with the PKG to generate the re-858

encryption key every time. Our proposed scheme, instead,859

works in a ciphertext-policy model without involving the PKG860

to generate the re-encryption key which reduces the burden for861

PKG.862

B. Efficiency Theoretical Analysis863

Table II illustrates the difference of our scheme, searchable864

encryption scheme [30], CPAB-KS scheme [34], [35] and865

KPAB-PRE-KS scheme [36], regarding the computation cost. 866

In Table II, λ denotes the security parameter in scheme [30], 867

|S| is the size of the attributes in an attribute set S. l is the 868

total row numbers in an access policy (M,ρ), p is the cost 869

of a bilinear pairing computation, e is the computation of an 870

exponentiation operation in an group G or GT and m is the 871

computation cost of the multiplication of two real numbers. 872

Dec(Or) is the decryption of an original ciphertext while 873

Dec(Re) is the decryption computation of a re-encrypted 874

ciphertext. Let |M | = max{|S|, l} denote the larger one 875

between |S| and l. Compared to the complexity of computing 876

an exponentiation, the cost of the hash operation in our scheme 877

is neglected here as it has minimal impact on the efficiency. 878

As shown in Table II, in the private key searchable en- 879

cryption scheme [30], the computation costs of Enc and 880

TokenGen algorithms are linear with the square of the 881

security parameter and the Test algorithm cost is linear 882

as well. Considering the public key searchable encryption 883

schemes, the efficiency of our scheme is almost identical to 884
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Fig. 2. Implementation Time.

the CPAB-KS scheme [34] while our scheme does cost more885

in the Test phase compared to [35]. It is because our scheme886

supports the data sharing functionality, which requires extra887

operations in the computation. When compared to KPAB-888

PRE-KS scheme [36], the KeyGen, Enc and TokenGen889

computation cost of our scheme are almost the same with [36].890

Regarding the computation cost of Test, ReEnc, Dec(Or)891

and Dec(Rec), our scheme cost a little more than KPAB-892

PRE-KS scheme since our scheme needs more bilinear pairing893

computation. The main reason is that interaction with a PKG894

is not required and we need separate each attribute as the895

input to a bilinear map while the KPAB-PRE-KS scheme uses896

the continuously multiply of attributes as one input to the897

bilinear map. However, the one input in the KPAB-PRE-KS898

scheme requires the participation of the PKG. So we believe899

our scheme is still better since no PKG involving is beneficial900

to reduce the computational cost. In our scheme, no more901

interaction with the PKG at the stage when the delegator902

computes the re-encryption key. The elimination of PKG can903

significantly decrease the overall burden of the PKG.904

C. Implementation905

We use Go language to take the advantage of open source906

Golang PBC package [39] which supports a wrapper to a907

Pairing-Based Cryptography library (PBC) [40] written in908

C. The CPU used in the implementation is Intel i5-8250U909

@1.60GHZ with a 8GB RAM. The chosen elliptic curve is910

Y 2 = X3 +X and the order of the group is 160 bit. In order911

to get a more accurate average execution time, the experiment912

was done 20 different times.913

The universal attribute is set to |U | = 1000. Let |S| = 5914

in the KenGen algorithm. Let the row l = 5 for an access915

policy (M,ρ) and for each row 1 ≤ i ≤ l, ρ(i) corresponds916

to a distinct attribute is S. Table III summarizes the running917

time. Further, |S| and l have been varied from 5 to 30 with918

step 5.919

We compare the execution time of the algorithms in Ta- 920

ble III and Figure 2. It is clear that the execution time 921

of KeyGen, Enc, TokenGen, Test, RKeyGen, ReEnc, 922

Dec(Or) and Dec(Re) algorithms are nearly linear to the size 923

of S, which matches our theoretical analysis. From Table III, 924

one may think that the re-encryption functionality is useless 925

since the Enc algorithm only takes about 80% of the running 926

time of the RKeyGen algorithm. The delegator can re-execute 927

the Enc algorithm to generate a ciphertext with the new 928

policy and keyword. However, applying the proposed proxy 929

re-encryption manner offers two benefits over re-running Enc. 930

First, once the re-encryption key is generated, it can be used 931

to re-encrypt the delegator’s ciphertext multiple times and 932

reduces the delegator’s computation cost in total. Second, if the 933

delegator chooses to re-execute the Enc algorithm, he should 934

first download the ciphertext from the cloud server, decrypt the 935

ciphertext to retrieve the underling plaintext and then encrypt 936

the plaintext with the new policy and keyword. Moreover, 937

downloading data from the cloud brings a new problem for 938

data maintenance. 939

We also compare the implementation time of our scheme 940

with the previous schemes [34], [35], [36] as they all work 941

in the public key setting and support the access policy on 942

the user’s identity. Note that, we did not compare the imple- 943

mentation time with scheme [30] as scheme [30] works in 944

the private key setting and does not support the access policy 945

on the user’s identity. Here, we make a comparison of the 946

Enc, TokenGen, Dec(Or) and Dec(Re) algorithms as these 947

algorithms are executed on the user’s side. Fig 3(a) shows that 948

the Enc algorithm computation cost of our scheme is almost 949

identical to the schemes [34], [35] and [36]. From Fig 3(b), 950

we can see that the TokenGen algorithm of our scheme is 951

almost as efficient as [35] and [36], and more efficient than 952

scheme [34]. As shown in Fig 3(c) and 3(d), the Dec(Or) 953

and Dec(Re) algorithms computation costs of ours scheme 954

are higher than that of scheme [36]. However, as we analyzed 955

in subsection V-B, our scheme does not need to interact with 956

the PKG and thus reduces the burden of the PKG. 957

VI. CONCLUSION 958

In this work, a new notion of ciphertext-policy attribute- 959

based mechanism (CPAB-KSDS) is introduced to support 960

keyword searching and data sharing. A concrete CPAB-KSDS 961

scheme has been constructed in this paper and we prove its 962

CCA security in the random oracle model. The proposed 963

scheme is demonstrated efficient and practical in the per- 964

formance and property comparison. This paper provides an 965

affirmative answer to the open challenging problem pointed 966

out in the prior work [36], which is to design an attribute- 967

based encryption with keyword searching and data sharing 968

without the PKG during the sharing phase. Furthermore, our 969

work motivates interesting open problems as well including 970

designing CPAB-KSDS scheme without random oracles or 971

proposing a new scheme to support more expressive keyword 972

search. 973
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