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 
Abstract—Medical imaging is crucial for medical diagnosis, and 

the sensitive nature of medical images necessitates rigorous 
security and privacy solutions to be in place. In a cloud-based 
medical system for Healthcare Industry 4.0, medical images 
should be encrypted prior to being outsourced. However, 
processing queries over encrypted data without first executing the 
decryption operation is challenging and impractical at present. In 
the paper, we propose a secure and efficient scheme to find the 
exact nearest neighbor over encrypted medical images. Instead of 
calculating the Euclidean distance, we reject candidates by 
computing the lower bound of Euclidean distance that is related to 
the mean and standard deviation of data. Unlike most existing 
schemes, our scheme can obtain the exact nearest neighbor rather 
than an approximate result. We then evaluate our proposed 
approach to demonstrate its utility.  
 

Index Terms—Cloud Computing, Efficiency, Medical Images, 
Nearest Neighbor Search, Privacy 
 

I. INTRODUCTION 

LOUD computing is becoming a norm in our society [1], 
and in such a deployment, the data owner can outsource 

databases and management functionalities to the cloud server. 
The latter stores the databases and supplies access mechanisms 
to query and manage the outsourced database. This allows data 
owners to reduce data management expenses and improve 
quality of service. However, the cloud may not be fully trusted 
because it may leak sensitive information to unauthorized 
entities (e.g., compromised) or foreign government agencies 
[2]. 

The rapid evolution of cloud computing is revolutionizing 
e-Health and the whole Industry 4.0 in the field of healthcare. 
The cloud-based electronic healthcare system is one popular 
application for Healthcare Industry 4.0. A well-designed 
electronic healthcare system can obviously improve the quality 
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of access and experience of healthcare users. In recent years, 
applications for cloud computing and big-data computing in the 
Healthcare Industry 4.0 have been enthusiastically discussed 
[3], [4], [5]. In an electronic healthcare system, patients’ 
medical images may be outsourced to a third-party [6], such as 
a professional community healthcare cloud server. Within the 
healthcare industry, many forms of medical imaging play a 
crucial role in diagnosis and quality of care, including magnetic 
resonance imaging (MRI), ultrasonic, computed tomography 
(CT) and computed radiography. In addition, for the healthcare 
industry, prior or archival records (e.g., disease outbreaks) can 
have significant reference value. When a new patient is seen, 
doctors can efficiently and accurately make a diagnosis and 
develop the appropriate treatment programs by finding similar 
cases in the database and analyzing them. For example, 
hospitals or related medical institutions can store patients’ 
medical images in a professional and secure database of a 
practical electronic healthcare system. If doctors acquire 
medical images from a new patient, they may find similar 
images in the outsourced database to be used as a reference. 
This is particularly crucial when dealing with symptoms from 
rare diseases such as those listed on 
https://globalgenes.org/rarelist/ (last accessed January 16, 
2018). Nearest neighbor search, therefore, can be used in such a 
scenario. However, the sensitivity and privacy of medical 
images require that the security and privacy of such images be 
ensured and preserved. 

Encrypting data by the data owner is a naive method to 
ensure privacy [7], while it ensures the secrecy of the 
outsourced data from the cloud and unauthorized users. 
Additionally, to protect query privacy, permitted users should 
send their requests to the cloud for evaluation after encryption. 
However, by analyzing the data access patterns, the cloud (or a 
malicious insider) can derive private information about the real 
data items even though the data and queries are encrypted [8], 
[9]. In detail, the access pattern includes not only the content of 
the data block accessed by the user but also the way how the 
user accesses the data block, such as frequency, location, order, 
habit and so on. By statistical analysis, data mining or other 
techniques, the cloud server can infer user’s type, hobbies and 
the frequency of accessing specific content. For example, 
traffic analysis technique can obtain some sensitive information 
about access pattern. When a user searches through a service 
provider such as Google, the search history will leak the user’s 
search habits even the identity. Also, the frequency of the 
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search may leak the popularity of the retrieved data. 
Additionally, the cloud server can establish some correlation 
among successive accesses. In other words, we need to ensure 
secrecy of the outsourced data and a user’s query record in 
secure query processing, as well as hiding data access patterns. 
In order to be practical and efficient, the proposed scheme 
needs to reduce the computation cost on the end-user as much 
as possible. 

The nearest neighbor search is a vital operation in data 
mining, machine learning, and information retrieval, and more 
recently the healthcare industry as well. Recently, due to the 
emergence of high-dimensional medical images, the 
importance of having an efficient and effective nearest 
neighbor search algorithm (in terms of speed and space) has 
become more pronounced. Generally, it is a difficult task to 
process encrypted data without first executing the decryption 
operation. The challenge is how a cloud server can process the 
queries over encrypted medical images. Motivated by this 
challenge, we propose an efficient and effective scheme to 
search for the exact nearest neighbor over outsourced encrypted 
medical images.  

Specifically, in the paper, we discuss the problem of exact 
nearest neighbor search over encrypted medical images and 
propose a secure and efficient solution. Our scheme supports 
dynamic updates. It allows data users to easily add or delete 
medical images whenever necessary. 

In the next section, we will introduce related work on nearest 
neighbor search. In Section III, we discuss relevant background 
materials including the system model and the design goals. The 
proposed scheme is explained in Section IV. Our security and 
performance analysis are outlined in Section V, and in the last 
section we conclude this paper. 

 

II. RELATED WORK 

Nearest neighbor search, first studied by Knuth [10] in 1973, 
has been the focus of ongoing research. In the literature, there 
are a large number of methods relating to the query process 
over encrypted data, such as searchable encryption [11]. In 
2006, Curtmola et al. presented a new searchable symmetric 
encryption (SSE) construction to resist chosen keyword attacks 
[12]. Kamara et al. proposed a dynamic SSE scheme and a new 
security framework to optimize dynamic operations [13]. In 
2013, Kamara et al. proposed a new dynamic SSE scheme, 
which is designed to support parallelizable search [14]. 
However, these schemes focus on keyword search, rather than 
the nearest neighbor search. We refer interested readers to [15] 
for a survey of existing SSE schemes. 

One could also use sequential scan (brute-force search), 
which sequentially calculates and compares the Euclidean 
distance between the query item and every record in the 
encrypted database. However, this scheme needs significant 
time and space requirements, which are proportional to the 
number and dimension of the data. Thus, such a scheme is not 
appropriate for dealing with large-scale and high-dimensional 
data despite the existence of methods to minimize the costs. In 
2009, Wong et al. [16] suggested searching for nearest 

neighbors over encrypted data using the asymmetric scalar 
product preserving encryption (ASPE) scheme. However, using 
the scheme requires linear search time relating to the number of 
data records. Two years later in 2011, Hu et al. [17] introduced 
a scheme with tree-based data structures and ASPE, which 
results in faster search time. Unfortunately, in this scheme the 
client who wishes to execute queries needs to perform 
numerous interactions with the server. Also, the need to 
maintain a local index will incur (significant) local storage 
costs. In 2006, Zhu et al. [18] designed a safer scheme which 
can resist potential attacks of cloud server and avoid 
key-sharing. Zhu et al. [19] in 2017 proposed an efficient 
scheme for k-nearest neighbor search, which enhances the 
protection of the decryption key and reduces the burden on data 
owners. 

There are a number of efficient schemes to find the 
approximate nearest neighbor, designed to improve efficiency 
in space and time at the cost of accuracy. The scheme based on 
Locality Sensitive Hashing (LSH) is a well-known and 
effective method that solves the nearest neighbor query 
problem in high-dimensional space. The LSH scheme [20] 
embeds data in low-dimensional subspaces and utilizes hash 
tables to improve efficiency. In 2004, Datar et al. [21] provided 
a basic LSH based on the original LSH scheme, which 
exploited the property of p-stable distribution to generalize the 
LSH method from the Hamming space to the Euclidean space. 
This scheme, however, incurs significant overhead in space. In 
2007, Andoni et al. [22] introduced the Leech lattice into the 
LSH scheme of [20], which reduces the query time and memory 
consumption. Hashing algorithms are useful to deal with 
high-dimensional and large-scale data, but they require 
additional cost when implemented in the exact nearest neighbor 
search. Due to the need for accuracy in the healthcare industry, 
these LSH-based schemes are not suitable for solving the 
medical images problems. 

Researchers have also proposed methods using tree-based 
data structures to efficiently find the nearest neighbor in the 
plaintext domain. As early as 1975, Bentley [23] proposed 
KD-tree and used this special data structure to store information 
that can be retrieved by associative searches. Many query types 
can be efficiently handled by this single data structure. Three 
decades later, Jagadish et al. [24] presented an efficient B+-tree 
structure to address the K-nearest neighbor (KNN) search 
problem involving high-dimensional data. Other typical 
examples include R-tree variations [25], [26], [27] and Cover 
tree [28]. These schemes, which are based on special data 
structures can reduce the search time cost because of the 
tree-structured organization of data. However, such data 
structures require large preprocess time and memory space, and 
so they are not appropriate for high-dimensional and 
large-scale data. 

In 2012, Ahn et al. [27] proposed a nearest neighbor search 
algorithm for plaintext. This algorithm reduces dimensions of 
data points by embedding them in a low-dimensional space. 
Non-nearest neighbors are eliminated via a comparison of the 
distances in this space. Due to this property, this algorithm is 
suitable for processing high-dimensional and large-scale data. 
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In particular, unlike most existing algorithms, this method can 
obtain the exact nearest neighbor rather than an approximate 
one. The beauty of this method is simplicity, in the sense of 
simple preprocessing without involving complex data 
structures. 

In summary, most of the existing techniques have limitations 
and are not applicable to the healthcare industry’s medical 
imaging problem. However, we also observe that the algorithm 
proposed by Ahn et al. [29] can simultaneously ensure both 
efficiency and accuracy. Based on this algorithm, we present an 
efficient scheme to search for the exact nearest neighbor in an 
outsourced medical image database. In our scheme, we 
compute the lower bound of Euclidean distance that is related 
to the mean and standard deviation of data. It is not necessary to 
load all data to compute the Euclidean distances in the original 
high-dimensional space. A large number of the nearest 
neighbor candidates can be eliminated by checking the lower 
bound. 
 

III. PROBLEM FORMULATION 

We will now introduce relevant notation (see Table I) and 
secure primitives [30], [31] used in our scheme, prior to 
describing the composition of the system model and design 
goals. 

A. Preliminaries 

Now, we introduce the secure primitives and generic 
protocols used in constructing our proposed scheme. These 
protocols are designed for a two-party semi-honest 
environment. 
1) Paillier Cryptosystem 

In the Paillier cryptosystem [30], given any two plaintexts 
𝑎, 𝑏 ∈ ℤே, the scheme has the following features: 
 Homomorphic Addition. 

𝐸௣௞ሺ𝑎 ൅ 𝑏ሻ ← 𝐸௣௞ሺ𝑎ሻ ∗ 𝐸௣௞ሺ𝑏ሻ mod 𝑁ଶ ; 
 Homomorphic Multiplication. 

𝐸௣௞ሺ𝑎 ∗ 𝑏ሻ ← 𝐸௣௞ሺ𝑎ሻ௕ mod 𝑁ଶ ; 
 Semantic Security. The Paillier cryptosystem is 

semantically secure [32]. Briefly, adversaries cannot 
infer any additional information about the plaintext 
from any given set of ciphertexts. 

In this paper, we assume that data owner encrypts data of 
interest using the Paillier cryptosystem prior to outsourcing (e.g. 
to the cloud). For simplicity, we omit mod 𝑁ଶ  term during 
homomorphic operations for the rest of this paper.  
2) Secure Multiplication (SM) Protocol 

 We assume that C1 has private input ሺ𝐸௣௞ሺ𝑎ሻ,𝐸௣௞ሺ𝑏ሻሻ, and 
Cଶ  owns the secret key sk. The secure multiplication (SM) 
protocol is designed to obtain the encrypted result of 𝑎 ∗ 𝑏, i.e., 
𝐸pk(𝑎 ∗ 𝑏) , which will be used as the output to C1 . In this 
protocol, C1  and C2  cannot obtain any private information 
regarding 𝑎 and 𝑏. For any given 𝑎, 𝑏∈ℤே: 
𝑎 ∗ 𝑏 ൌ ሺ𝑎 ൅ 𝑟௔ሻ ∗ ሺ𝑏 ൅ 𝑟௕ሻ െ 𝑎 ∗ 𝑟௕ െ 𝑏 ∗ 𝑟௔ െ 𝑟௔ ∗ 𝑟௕         (1)                    

All arithmetic operations are processed under ℤே.  
Algorithm 1 describes the SM protocol. In addition, for any 

given x ∈ ℤே , “N-x” is equivalent to “-x” under ℤே.  

3) Secure Squared Euclidean Distance (SSED) Protocol 
 Consider C1  has two encrypted vectors ቀ𝐸௣௞ሺ𝑋ሻ, 𝐸௣௞ሺ𝑌ሻቁ, 

and C2  has the secret key sk. Note that, X and Y are both 
d-dimensional vectors, i.e., 𝐸௣௞ሺ𝑋ሻ ൌ 〈𝐸௣௞ሺ𝑥ଵሻ, … , 𝐸௣௞ሺ𝑥ௗሻ〉 and 
𝐸௣௞ሺ𝑌ሻ ൌ 〈𝐸௣௞ሺ𝑦ଵሻ, … , 𝐸௣௞ሺ𝑦ௗሻ〉. The goal of SSED is to securely 
calculate 𝐸௣௞ሺ|𝑋 െ 𝑌|ଶሻ, where |𝑋 െ 𝑌| represents the Euclidean 

TABLE I 
NOTATIONS  

Notation Description 

sk, pk Secret and public key 
𝐸௣௞ Encryption function via the public key pk 
𝐷௦௞ Decryption function via the secret key sk  
C1 Cloud server with the encrypted database 
C2 Cloud server owns the secret key sk 
M Medical image database, 𝑀 ൌ 〈𝑚ଵ, … , 𝑚௡〉 
ID 
d 

Identifier of record in M 
Dimension of a record in M. 

Q Query image, 𝑄 ൌ 〈𝑞ଵ, … , 𝑞ௗ〉 
𝜇 The mean of a medical image 
𝜎 The standard deviation of a medical image 

 

Algorithm 1 SM(𝐸௣௞ሺ𝑎ሻ, 𝐸௣௞ሺ𝑏ሻ) 

Input:  
𝐸௣௞ሺ𝑎ሻ: the encrypted data 𝑎 
𝐸௣௞ሺ𝑏ሻ: the encrypted data 𝑏 

Output: 
 𝐸௣௞ሺ𝑎 ∗ 𝑏ሻ: the encrypted result of 𝑎 multiplied 𝑏 
1: C1 picks two random numbers 𝑟௔, 𝑟௕ ∈ ℤே 
2: C1 computes 𝑎ᇱ ← 𝐸௣௞ሺ𝑎ሻ ∗ 𝐸௣௞ሺ𝑟௔ሻ, 
3:                       𝑏ᇱ ← 𝐸௣௞ሺ𝑏ሻ ∗ 𝐸௣௞ሺ𝑟௕ሻ  

4:       then sends 𝑎ᇱ, 𝑏ᇱ to C2   
5: C2 decrypts ℎ௔ ← 𝐷௦௞ሺ𝑎ᇱሻ, ℎ௕ ← 𝐷௦௞ሺ𝑏ᇱሻ 
6: C2 computes ℎ ← ℎ௔ ∗ ℎ௕ mod 𝑁, ℎᇱ ← 𝐸௣௞ሺℎሻ 
7:       then sends ℎᇱ to C1     
8: C1 computes 𝑠 ← ℎᇱ ∗ 𝐸௣௞ሺ𝑎ሻேି௥್   
9:                      𝑠ᇱ ← 𝑠 ∗ 𝐸௣௞ሺ𝑏ሻேି௥ೌ  
10: C1 computes 𝐸௣௞(𝑎 ∗ 𝑏) ← 𝑠ᇱ ∗ 𝐸௣௞ሺ𝑟௔ ∗ 𝑟௕ሻேିଵ 

 

Algorithm 2  
SSEDLB(𝐸௣௞ሺ𝑑ሻ, 𝐸௣௞ሺ𝜇௫ሻ, 𝐸௣௞ሺ𝜇௬ሻ, 𝐸௣௞ሺ𝜎௫ሻ, 𝐸௣௞൫𝜎௬൯) 
Input:  

𝐸௣௞ሺ𝑑ሻ, 𝐸௣௞ሺ𝜇௫ሻ, 𝐸௣௞൫𝜇௬൯, 𝐸௣௞ሺ𝜎௫ሻ, 𝐸௣௞൫𝜎௬൯ 
Output:  
  𝐸௣௞ሺ𝐿𝐵ሺ𝑋, 𝑌ሻሻ: the encrypted lower bound of the 
squared Euclidean distance between X and Y 
1: C1 computes 𝐸௣௞ሺ𝜇௫ െ 𝜇௬ሻ ← 𝐸௣௞ሺ𝜇௫ሻ ∗ 𝐸௣௞ሺ𝜇௬ሻேିଵ  
2:                       𝐸௣௞ሺ𝜎௫ െ 𝜎௬ሻ ← 𝐸௣௞ሺ𝜎௫ሻ ∗ 𝐸௣௞ሺ𝜎௬ሻேିଵ 
3: C1 and C2 compute 𝐸௣௞ሺሺ𝜇௫ െ 𝜇௬ሻଶሻ  

and 𝐸௣௞ሺሺ𝜎௫ െ 𝜎௬ሻଶሻ using the SM protocol 

3: C1 computes 𝐸௣௞ ቀ൫𝜎௫ െ 𝜎௬൯
ଶ

൅ ൫𝜎௫ െ 𝜎௬൯
ଶ

ቁ ←

                             𝐸௣௞ሺሺ𝜇௫ െ 𝜇௬ሻଶሻ ∗ 𝐸௣௞ሺሺ𝜎௫ െ 𝜎௬ሻଶሻ 
4: C1 and C2 compute 

 𝐸௣௞ሺ𝑑 ∗ ሺሺ𝜇௫ െ 𝜇௬ሻଶ ൅ ሺ𝜎௫ െ 𝜎௬ሻଶሻሻ 
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distance between X and Y. In the protocol, C1 and C2 cannot 
obtain any private information about X and Y. The prime idea of 
SSED is based on the following equation: 
   |𝑋 െ 𝑌|𝟐 ൌ ∑ ሺ𝑥௜ െ 𝑦௜ሻଶௗ

௜                                             (2) 
For 1 ൑ 𝑖 ൑ 𝑑 , C1  computes 𝐸௣௞ሺ𝑥௜ െ 𝑦௜ሻ  using the 

homomorphic properties. Then, C1  and C2  cooperatively 
compute 𝐸௣௞ሺሺ𝑥௜ െ 𝑦௜ሻଶሻ using the SM protocol, for 1 ൑ 𝑖 ൑ 𝑑. 
Note that only C1 knows the outputs of SM. Based on Equation 
2, C1  computes 𝐸௣௞ሺ|𝑋 െ 𝑌|ଶሻ  locally by applying 
homomorphic properties to 𝐸௣௞ሺሺ𝑥௜ െ 𝑦௜ሻଶሻ. 
4) Secure Squared Euclidean Distance Lower Bound 
(SSEDLB) Protocol 

We assume that C1 has the encrypted statistical information, 
including ቀ𝐸௣௞ሺ𝑑ሻ, 𝐸௣௞ሺ𝜇௫ሻ, 𝐸௣௞ሺ𝜎௫ሻ, 𝐸௣௞൫𝜇௬൯, 𝐸௣௞൫𝜎௬൯ቁ,  and C2 

has sk, where d denotes the dimension of data, and 
𝜇௫, 𝜎௫, 𝜇௬, 𝜎௬ respectively are the mean and standard deviation 
of d-dimensional data points and the query point. The main goal 
of SSEDLB is to calculate the lower bound of the squared 
Euclidean distance between X and Y, and this result is in 
encrypted form. In this protocol, no sensitive information 
pertaining to the statistical information is revealed to C1 and C2. 
SSEDLB can be described as follows, and Algorithm 2. 

    𝐿𝐵ሺ𝑋, 𝑌ሻ ൌ 𝑑ሺሺ𝜇௫ െ 𝜇௬ሻଶ ൅ ሺ𝜎௫ െ 𝜎௬ሻଶሻ. 

B. System Model 

As shown in Fig.1, there exists four entities in our scheme, 
namely: a data owner (e.g., hospital), multiple data users (e.g., 
doctors in different regions), and two semi-honest cloud servers. 
Note that data users are authorized by the data owner. 

The data owner Alice owns a medical image database M, 
which she would like to outsource to the cloud server. Due to 
the sensitivity and privacy of medical images, Alice encrypts 
these images as well as computing and encrypting the mean and 
standard deviation for each image in the database. In order to 
process the query, Alice outsources the encrypted calculated 
results and database to the cloud server. 
 A legitimate data user Bob can upload a medical image to the 
cloud server and query the exact nearest neighbor (i.e., 𝑄 ൌ
〈𝑞ଵ, … , 𝑞ௗ〉). To ensure the privacy of the query, Bob encrypts 𝑄 
with the Paillier public key pk. Additionally, Bob computes the 
mean and standard deviation of 𝑄, denoted by 𝜇௤ and 𝜎௤. Then, 
he sends his encrypted query and related information after 
encrypting d, 𝜇௤, and 𝜎௤. 

In our scheme, we use two cloud servers to securely and 
efficiently execute related calculations. Both cloud servers are 
assumed to be “honest-but-curious.” Specifically, “Honest” 

represents that the cloud servers follow the rules of the protocol 
and our program honestly, whereas “curious” represents that 
the cloud server may try to analyze the data flow and execution 
of the protocol to gain additional information.  

C. Security Guarantee 

Our scheme achieves semantic security under quantifiable 
leakage functions. In other words, we can formally define the 
views of the cloud server in stateful leakage functions. 
Specifically, the cloud servers only know the information 
defined in leakage functions and no other valid knowledge 

when a polynomial number of adaptive queries are executed. 
We define three stateful leakage functions for the views of the 
encrypted database, the query record, and the access pattern. 
When the encrypted database 𝐸௣௞ሺ𝑀ሻ is outsourced, the server 
will know its size and dimension. The corresponding leakage 
function 𝐿ଵ is defined as follows:  

𝐿ଵ ቀ𝐸௣௞ሺ𝑀ሻቁ ൌ ሺ𝑛, 𝑑, |𝑥|ሻ 

where 𝑛 is the size of the medical image database, 𝑑  is the 
dimension of a medical image and |𝑥| is the bit lengths of 
encrypted data. 

When the query request is submitted, the cloud server can see 
the dimension of the encrypted query image. The leakage 
function 𝐿ଶ is defined as: 

𝐿ଶሺ𝑄𝑢𝑒𝑟𝑦ሻ ൌ ሺ𝐸௣௞൫𝜇௤൯, 𝐸௣௞൫𝜎௤൯, 𝐸௣௞ሺ𝑄ሻሻ 
where 𝐸௣௞ሺ𝑄ሻ  is the encrypted query image, 𝐸௣௞൫𝜇௤൯ and 
𝐸௣௞൫𝜎௤൯ are the encrypted mean and standard deviation of 𝑄. 

By executing the Algorithm 3, the cloud server will find out 
the exact nearest neighbor of query 𝑄. The leakage function is 
defined as: 

𝐿ଷሺ𝑄𝑢𝑒𝑟𝑦ሻ ൌ ሺ𝐼𝐷, 𝑑𝑎𝑡𝑎ሻ 
where ID is corresponding with the exact nearest neighbor of 
query 𝑄, 𝑑𝑎𝑡𝑎 is the encrypted image. 

Based on the above three stateful leakage functions, we give 
a formal security definition for our scheme. In simple, a 
probabilistic polynomial time simulator 𝒮  can simulate the 
query process and get a result, which are indistinguishable with 
the real algorithm. 
Theorem 1. Our scheme is semantic secure with leakage 
functions ሺ𝐿ଵ, 𝐿ଶ, 𝐿ଷሻ in the random oracle model if symmetric 
encryption and Paillier cryptosystem are IND-CPA security. 

The proof will be discussed in section IV-C and it shows that 
the server only can know the above defined leakage and no 
other information else.  

D. Design Goals 

To meet the requirements of Healthcare Industry 4.0 and 
enable an exact nearest neighbor search over encrypted medical 
images using the above system model, our scheme should 
satisfy the following goals:  
1) Accuracy: To meet the need for accuracy in the healthcare 

industry, the proposed scheme achieves a precise nearest 

Fig. 1.  Architecture for searching over encrypted cloud data 
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neighbor search instead of an approximation. 
2) Security: Healthcare Industry 4.0 requires high security 

and privacy. Our scheme is designed to ensure the 
confidentiality of all related medical images. To ensure 
query privacy, the database and query need to be 
encrypted before sending to the cloud server. The cloud 
servers can infer nothing useful when analyzing the data 
flow in the query process. 

3) Efficiency: Efficiency is a remarkable feature of 
Healthcare Industry 4.0. Our scheme has significantly less 
computational expense and resource consumption than 
existing schemes. In our scheme, we do not need to 
compute the Euclidean distance for all data, and the query 
process incurs low computational overhead on the user. 

4) Dynamic: Our scheme supports dynamic updates. Data 
users can easily add or delete medical images that have 
been outsourced to the cloud server whenever necessary. 

 

IV. THE PROPOSED SCHEME 

In this section, we introduce our scheme using the previously 
mentioned protocols as building blocks. After introducing the 
basic scheme, we will give an additional explanation on 
dynamics and security. 

A. Basic Scheme 

Let xൌሺ𝑥1,…,𝑥𝑑ሻT  be a d-dimensional vector. It is easy to 
compute the mean and variance of the elements in 𝑥 ∈ 𝑅ௗ, and 
they are given by μ௫ൌ

1

ௗ
∑ 𝑥௜

ௗ
௜  and 𝜎௫

ଶ ൌ
ଵ

ௗ
∑ ሺ𝑥௜ െ 𝜇௫ሻଶௗ

௜ , 

respectively. When another d-dimensional vector yൌሺ𝑦1,…,𝑦ௗሻT 
is given, we can easily compute 𝜇௬  and 𝜎௬

ଶ. Firstly, we make a 
definition of LB(x, yሻ as follows: 

𝐿𝐵ሺ𝑥, 𝑦ሻ ൌ 𝑑ሺሺ𝜇௫ െ 𝜇௬ሻଶ ൅ ሺ𝜎௫ െ 𝜎௬ሻଶሻ.                         (1) 
𝐿𝐵ሺ𝑥, 𝑦ሻ  is the lower bound of the squared Euclidean 

distance between x and y, which is denoted by 𝑑𝑖𝑠𝑡ሺ𝑥, 𝑦ሻଶ, as 
shown in Lemma 1: 
Lemma 1. 𝑑𝑖𝑠𝑡ሺ𝑥, 𝑦ሻଶ ൒ 𝑑ሺሺ𝜇௫ െ 𝜇௬ሻଶ ൅ ሺ𝜎௫ െ 𝜎௬ሻଶሻ 
 We will directly utilize this lemma, the detailed proof for 
which you can find in [29]. Suppose we have a dataset  𝑋 ൌ
ሼ𝑥ଵ, … , 𝑥௡ሽ. We can calculate and store 𝜇x and 𝜎x for all 𝑥 ∈ 𝑋 in 
O(nd) time and O(n) space. When a query y comes, we can 
get 𝜇௬ and 𝜎௬ in O(d) time, and LB(x, y) is calculated in O(1) 
time for any 𝑥 ∈ 𝑋. The algorithm proposed in [29] uses the 
lower bound to dramatically reduce the calculation of 
Euclidean distance. Specifically, we can eliminate lots of 
nearest neighbor candidates using simple computations and 
comparisons. All 𝑥 ∈ 𝑋 and query y can be embedded in the 
two–dimensional space based on their mean and variance of 
elements. We can easily calculate the lower bounds of the 
squared Euclidean distance. Then we can reject 𝑥௜ if LB(𝑥௜,  yሻ 
is larger than the squared Euclidean distance to the current 
nearest neighbor from y. Using this algorithm, many data points 
are eliminated in constant time rather than linear time. When 
the elements are high-dimensional data, the computational cost 
reduction will be significant. 

As mentioned earlier, we assume that Alice owns a medical 
image database M. Note that these medical images can be x-ray 

images, MRI (Magnetic Resonance Image), CT (Computed 
Tomography) images, and so on. Initially, Alice computes the 
mean and standard deviation for each image in the database, 
expressed as 𝜇௜ and 𝜎௜ for 1 ൑ i ൑ 𝑛. Then Alice encrypts the 𝜇௜ 
and 𝜎௜  for 1 ൑ 𝑖 ൑ 𝑛  with Paillier cryptosystem, denoted by 
 𝐸௣௞ሺ𝜇௜ሻ and 𝐸௣௞ሺ𝜎௜ሻ. After that, Alice encrypts her database 
attribute-wise. In fact, the database is encrypted attribute-wise, 
so the dimension d is public. Then the cloud server can compute 
𝐸௣௞ሺ𝑑ሻ. Let the encrypted database be expressed as 𝐸௣௞ሺ𝑀ሻ. The 
index is built using the 𝐸௞ሺ𝐼𝐷ሻ , where 𝑘  is a symmetric 

 

Algorithm 3   
Secure Nearest Neighbor Search (𝐸௣௞ሺ𝑀ሻ, 𝐸௣௞ሺ𝑄ሻ) 
Input:  

𝐸௣௞ሺ𝑀ሻ: the encrypted database 

𝐸௣௞ሺ𝑄ሻ: the encrypted query 
Output: 

𝑚௠௜௡: the nearest neighbor of Q 
1: Bob sends 𝐸௣௞ሺ 𝜇௤ሻ, 𝐸௣௞ሺ𝜎௤ሻ and 𝐸௣௞ሺ𝑄ሻ to C1 
2: C1 do 
3: picks a seed 𝐸௣௞ሺ𝑚௠௜௡ሻ from 𝐸௣௞ሺ𝑀ሻ.  
4: computes 𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ ← 𝑆𝑆𝐸𝐷ሺ𝐸௣௞ሺ𝑚௠௜௡ሻ, 𝐸௣௞ሺ𝑄ሻሻ  
5: for 𝑖 ൌ 1 → 𝑛 do 
6:     𝐸௣௞ሺ𝐿𝐵௜ሻ ←
   𝑆𝑆𝐸𝐷𝐿𝐵ሺ𝐸௣௞ሺ𝑑ሻ, 𝐸௣௞ሺ𝜇௠೔

ሻ, 𝐸௣௞൫𝜎௠೔
൯, 𝐸௣௞ሺ𝜇௤ሻ, 𝐸௣௞ሺ𝜎௤ሻሻ  

7: end for 
8: sends 𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ, 𝐸௣௞ሺ𝐿𝐵ሻ and 𝐸௞ሺ𝐼𝐷ሻ to 2C . 

9: C2 do 
10: decrypts 𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻand 𝐸௣௞ሺ𝐿𝐵ሻ 
11: for 𝑖 ൌ 1 → 𝑛 do: 
12:   if 𝐷௦௞ሺ𝐿𝐵௜ሻ ൒ 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ then 
13:  continue 
14:    end if 
15:  if 𝐷௦௞ሺ𝐿𝐵௜ሻ ൏ 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ then 
16:    sends 𝐸௞ሺ𝑖ሻ to C1 
17:       C1 and C2 compute 𝐸௣௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௝, 𝑄ሻሻ  
18:       C1 sends 𝐸௣௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௝, 𝑄ሻሻ to 2C  

19:       C2 do 
20:       decrypts 𝐷௦௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௝, 𝑄ሻሻ  
21:      if 𝐷௦௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௝, 𝑄ሻሻ ൒ 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ then 
22:    continue 
23:     end if 
24:     if 𝐷௦௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௝, 𝑄ሻሻ ൏ 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ then 
25:    𝐸௞ሺ𝑚𝑖𝑛ሻ ← 𝐸௞ሺ𝑖ሻ  
26:    𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ ← 𝐷௦௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௝, 𝑄ሻሻ  
27:       end if 
28:    end if 
29: end for 
30: C2 sends 𝐸௞ሺ𝑚𝑖𝑛ሻ to C1 
31: C1 do 
32: receives 𝐸௞ሺ𝑚𝑖𝑛ሻ and find 𝐸௣௞ሺ𝑚௠௜௡ሻ 
33: picks a random number 𝑟 ∈ ℤே and send r to Bob 
34: computes 𝐸௣௞ሺ𝑚௠௜௡ ൅ 𝑟ሻ and send it to 2C  

35: C2 computes and sends 𝐷௦௞ሺ𝑚௠௜௡ ൅ 𝑟ሻ to Bob 
36: Bob computes 𝑚௠௜௡ via 𝐷௦௞ሺ𝑚௠௜௡ ൅ 𝑟ሻ  and r 
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encryption key. The owner outsources 𝐸௞ሺ𝐼𝐷ሻ,  𝐸𝑝𝑘ሺ𝜇𝑖ሻ, 𝐸௣௞ሺ𝜎௜ሻ, 
and 𝐸௣௞ሺ𝑀ሻ, and subsequent query process to the cloud. 

In our proposed model, there exist two honest-but-curious 
cloud servers, denoted by C1 and C2, and together they form a 
federated cloud. Then, we outsource the encrypted database to 
C1 and C2 keeps the secret key sk. In fact, it is not a fresh 
assumption and has been widely used in the related research 
domains [33]. The premise of this assumption is as follows. In 
general, the cloud service providers are famous and formal IT 
companies, such as Amazon and Google. Therefore, in case 
damaging their reputation and effecting revenue, a collusion 
between them is almost impossible to happen.  

In this situation, the owner Alice outsources the encrypted 
image database 𝐸௣௞ሺ𝑀ሻ to C1 and sends the secret key of the 
Paillier cryptosystem to C2. The intent of our scheme is to 
efficiently and securely retrieve the record which is closest to 
the query in the encrypted database. In brief, now a legitimate 
user wants to search out the exact nearest neighbor of his query 
record 𝑄 ൌ 〈𝑞ଵ, … , 𝑞ௗ〉 based on the encrypted medical image 
database 𝐸௣௞ሺ𝑀ሻ  stored in C1 . Firstly, the user sends his 
encrypted query information to C1. After this, C1 and C2 utilize 
the above three protocols to securely search the nearest 
neighbor of the input query 𝑄. In the end, only the user will 
know the exact nearest neighbor to 𝑄. The key steps of our 
algorithm are shown in Algorithm 3. 

Now a legitimate user Bob wants to search for an image that 
is the most similar to his query 𝑄 based on 𝐸௣௞ሺ𝑀ሻ in C1. First 
of all, Bob computes the mean and standard deviation of 𝑄, 
denoted by 𝜇௤  and 𝜎௤ . Then he encrypts 𝜇௤  and 𝜎௤  with the 
Paillier public key, expressed as 𝐸௣௞ሺ𝜇௤ሻ, and 𝐸௣௞ሺ𝜎௤ሻ. After 
that, Bob encrypts the query image 𝑄  as 𝐸௣௞ሺ𝑄ሻ  and sends 
𝐸௣௞ሺ𝜇௤ሻ, 𝐸௣௞ሺ𝜎௤ሻ, and 𝐸௣௞ሺ𝑄ሻ to the cloud server C1. 

After C1 receives the query request and related information 
from Bob, the cloud servers will execute the query process. The 
interaction between the two servers is shown in Fig. 2.  

Firstly C1 picks an encrypted image in 𝐸௣௞ሺ𝑀ሻ as the seed 
𝐸௣௞ሺ𝑚௠௜௡ሻ  and its ID is 𝐸௞ሺ𝑚𝑖𝑛ሻ . Then C1  and C2  jointly 
compute the secure squared Euclidean distance between 
𝐸௣௞ሺ𝑚௠௜௡ሻ and the query 𝐸௣௞ሺ𝑄ሻ, denoted by 𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ. 
Next, for each encrypted record, the servers securely calculate 
the lower bound of the squared Euclidean distance between this 
record and the query 𝐸௣௞ሺ𝑄ሻ using the SSEDLB protocol. We 
symbolize these encrypted values as 𝐸௣௞ሺ𝐿𝐵௜ሻ. Notice that each 
image 𝑚௜ corresponds to 𝐸௣௞ሺ𝐿𝐵௜ሻ. However, to streamline the 
notation, we will delete the subscript and use 𝐸௣௞ሺ𝐿𝐵ሻ  to 
represent all 𝐸௣௞ሺ𝐿𝐵௜ሻ . Finally, C1  sends 𝐸௣௞ሺ𝐿𝐵ሻ  and 
𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ  as well as the corresponding 𝐸௞ሺ𝐼𝐷ሻ  to the 
server C2. 

Upon receiving 𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ  and 𝐸௣௞ሺ𝐿𝐵ሻ  from C1 , 
C2 decrypts them with the secret key sk of the Paillier 
cryptosystem, denoted by 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ  and 𝐷௦௞ሺ𝐿𝐵ሻ . 
Afterward, C2 makes comparisons between 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ and 
𝐷௦௞ሺ𝐿𝐵௜ሻ  for 1 ൑ 𝑖 ൑ 𝑛 . If 𝐷௦௞ሺ𝐿𝐵௜ሻ  value is bigger than 
𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ, we can know that the 𝑑𝑖𝑠𝑡ଶሺ𝑚௜, 𝑄ሻ is larger than 
the 𝑑𝑖𝑠𝑡ଶሺ𝑚௠௜௡, 𝑄ሻ. Therefore, the relevant image 𝑚௜ cannot be 
the nearest neighbor to the query. Else, two servers jointly 

calculate the secure squared Euclidean distance between 
𝐸௣௞ሺ𝑚௜ሻ and the query 𝐸௣௞ሺ𝑄ሻ, denoted by 𝐸௣௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௜, 𝑄ሻሻ. 
C1  sends 𝐸௣௞ሺ𝑑𝑖𝑠𝑡ଶሺ𝑚௜, 𝑄ሻሻ  to C2 , then C2  decrypts it and 
compares 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ and 𝐷௦௞ሺ𝑑𝑖𝑠𝑡ሻ. If 𝐷௦௞ሺ𝑑𝑖𝑠𝑡ሻ is smaller 
than 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ, C2 will update the value of 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ 
using 𝐷௦௞ሺ𝑑𝑖𝑠𝑡ሻ and modify the ID 𝐸௞ሺ𝑚𝑖𝑛ሻ. If not, C2 has no 
operations. In our algorithm, we check each 𝐷௦௞ሺ𝐿𝐵ሻ  and 
update the nearest neighbor we have found according to the 
situation. After traversing all records in the database, we can 
discover the minimum value of the secure squared Euclidean 
distance between 𝐸௣௞ሺ𝑄ሻ and the data item in the outsourced 
dataset. The corresponding data item is the nearest neighbor of 
query 𝑄 whose ID is 𝐸௞ሺ𝑚𝑖𝑛ሻ. At the same time, C2 sends the 
corresponding ID 𝐸௞ሺ𝑚𝑖𝑛ሻ to C1. 

C1 receives the encrypted ID 𝐸௞ሺ𝑚𝑖𝑛ሻ and searches out the 
corresponding encrypted data 𝐸௣௞ሺ𝑚௠௜௡ሻ. Now we get the exact 
nearest neighbor of our query 𝑄, but it is in encrypted form. 
Next, C1 picks a random number r in ℤே  and sends r to the 
authorized user Bob through a secure channel. In addition, C1 
encrypts r and computes 𝐸௣௞ሺ𝑚௠௜௡ ൅ 𝑟ሻ  using the 
homomorphic properties. At the end of our algorithm, C1 sends 
𝐸௣௞ሺ𝑚௠௜௡ ൅ 𝑟ሻ  to C2 . Then C2  decrypts it, denoted by 
𝐷௦௞ሺ𝑚௠௜௡ ൅ 𝑟ሻ, and securely sends 𝐷௦௞ሺ𝑚௠௜௡ ൅ 𝑟ሻ to Bob.  

Bob now receives r and 𝑚௠௜௡ ൅ 𝑟, so he can easily compute 
to get 𝑚௠௜௡, which is the exact nearest neighbor of his query 𝑄. 

B. Scalability 

Our proposed scheme has good scalability performance. And 
the dynamic changes to the database have almost no impact on 
our algorithm. The scalability is mainly reflected in two aspects. 
On the one hand, the owner Alice wants to add one or more 
medical images to the database that has been encrypted and 
outsourced. In this case, Alice first computes the mean and 
standard deviation of these new images, then she encrypts and 
uploads these images and related means, standard deviations 
and IDs to the cloud server C1.  

On the other hand, if Alice wants to delete one or more 
images that are stored in C1 , she only needs to send the 
corresponding IDs to C1 and the server will delete the relative 
records. The owner can easily modify his or her hosted database 
that is in the remote cloud server, and the addition or deletion of 
data will not affect the user experience. 

C. Security Analysis 

When the encrypted database is outsourced to the cloud 
servers, secure query protocols and algorithms need to preserve 
the secrecy and privacy of the outsourced database as well as 
the user’s query at all times. At the same time, data access 
patterns should be hidden from the cloud. In our scheme, 
because of the encryption of query 𝑄 and the semantic security 

Fig. 2.  Interaction between two cloud servers 
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of the Paillier cryptosystem, a user’s input query 𝑄  is well 
protected from other participants in the whole process. 
 In the SM protocol, all parameters are in encrypted form. The 
decryptions at line 5 of Algorithm 1 reveal two meaningless 
values because they have been confused by random numbers. 
Therefore, we know that this SM protocol is secure and it will 
not leak sensitive information. In addition, the SSED protocol 
and SSEDLB protocol are extended from the SM protocol 
which means that their security is based on the SM protocol 
security. Therefore, our three basic protocols are secure under 
our setting. 
 As for the security analysis of Algorithm 3, it is illustrated as 
follows. First, we should know that all parameters are 
transmitted through secure channels and the user Bob needs to 
be certified. So we need not consider illegal access and attacks 
during the transmission process. At line 10 of Algorithm 3, C2 
gets 𝐷௦௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ and 𝐷௦௞ሺ𝐿𝐵ሻ in decrypted form. However, 
these values will not reveal information related to our sensitive 
medical images and the user’s query, as these calculation 
results are weakly correlated with the original data. Also, C2 
can’t derive the sensitive data. In fact, if one wants better 
security, they can make a small change in our algorithm. C1 can 
add a random number 𝑟 ∈ ℤே  to 𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇ሻ  and 𝐸௣௞ሺ𝐿𝐵ሻ 
(denoted by 𝐸௣௞ሺ𝑀𝐼𝑁𝐷𝐼𝑆𝑇 ൅ 𝑟ሻ  and 𝐸௣௞ሺ𝐿𝐵 ൅ 𝑟ሻ ) before 
sending them to C2. The same operation can apply to line 20 of 
Algorithm 3 to protect 𝐸௣௞ሺ𝑑𝑖𝑠𝑡ሻ. At the end of our algorithm, 
C1  sends the exact nearest neighbor to C2  after adding a 
random number interference, preventing C2 from knowing the 
search result.  

Now we provide the formal security proof for our scheme. 
Definition 1. Given our scheme with three stateful leakage 
functions ሺ𝐿ଵ, 𝐿ଶ, 𝐿ଷሻ , a probabilistic polynomial time 
adversary 𝒜 and a probabilistic polynomial time simulator 𝒮. 
Then we define two probabilistic games 𝑅𝑒𝑎𝑙𝒜ሺ𝜆ሻ  and 
𝐼𝑑𝑒𝑎𝑙𝒜,𝒮ሺ𝜆ሻ as follows: 

𝑅𝑒𝑎𝑙𝒜ሺ𝜆ሻ: a challenger 𝒞 owns public/private key pair and a 
symmetric key. The adversary 𝒜 firstly selects a dataset D and 
asks 𝒞  to construct the encrypted index. After that, 𝒜 
adaptively executes a polynomial number of secure queries. 
Finally, 𝒜 returns a bit as the game’s output. 

𝐼𝑑𝑒𝑎𝑙𝒜,𝒮ሺ𝜆ሻ: 𝒜 selects D, and 𝒮 generates a random index 
based on 𝐿ଵ. Next 𝒜 adaptively executes a polynomial number 
of secure queries. According to 𝐿ଶ and 𝐿ଷ of each query record, 
𝒮 generates the relevant result. Finally, 𝒜 returns a bit as the 
game’s output. 

Our scheme is ሺ𝐿ଵ, 𝐿ଶ, 𝐿ଷሻ -semantic security if for all 
probabilistic polynomial time adversary 𝒜  there exists a 
probabilistic polynomial time simulator 𝒮 such that  

Prሾ𝑅𝑒𝑎𝑙𝒜ሺ𝜆ሻ ൌ 1ሿ െ Pr ሾ𝐼𝑑𝑒𝑎𝑙𝒜,𝒮ሺ𝜆ሻ ൌ 1ሿ ൑ 𝜖ሺ𝜆ሻ 
where 𝜖ሺ𝜆ሻis a negligible function in 𝜆. 

Proof of Theorem 1: 

Proof. According to 𝐿ଵ, the simulator 𝒮 can generate a random 
index, which has the same format and size as the real encrypted 
index. Due to the semantic security of symmetric encryption 

and Paillier cryptosystem, the adversary 𝒜 cannot distinguish 
between the random index and real index.  

When executing the first query, 𝒮 generates a query request 
firstly. Then a random oracle 𝐻ଵ selects data from the dataset. 
After that another random oracle 𝐻ଶ gets the result: ID. Note 
that this ID is exactly identical to the real result indicated in 𝐿ଷ. 
Because of the IND-CPA security of Paillier cryptosystem, this 
query request is computationally indistinguishable from real 
query request. For the following queries, 𝒮, 𝐻ଵ and 𝐻ଶ get the 
results in the same way. And the results derived from the 
random index are the same as real results. In other words, 𝒜 
cannot differentiate simulated requests and results from real 
data. 

 Based on the above discussions, our proposed scheme 
obviously meets the security requirements. It protects the 
secrecy and privacy of data as well as the user’s input query 
while simultaneously hiding data access patterns. 

V. PERFORMANCE ANALYSIS 

In this section, we evaluate the performance of our scheme 
under different parameter environments. We utilized the 
Paillier cryptosystem [30] to execute homomorphic encryption 
operation and implemented the proposed scheme in C. Our 
experiments were completed on a Linux machine with the 
following features:  
 CPU: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz 
 Physical Memory: 3.8G 
 OS: Ubuntu 15.10 Linux 4.2.0-16-generic SMP x86_64 

To evaluate our exact nearest neighbor search scheme, we 
used the LIDC-IDRI dataset. The LIDC-IDRI dataset [34] is a 
real medical image dataset with a total of 1018 CT images and 
we use part of these images to experiment. The size of the 
original image is 512*512. We list eight samples in Fig.4. In 
fact, we usually only care about specific areas of the medical 
images, such as the area where the lesion occurs. In this case, 
the rest of the image is pointless but consumes a lot of 
computational resources. Therefore in the practice application, 
we were able to remove those meaningless parts and only save a 
part of the original image. In our experiments, we intercept the 
central part of the original images to build a new dataset, where 
the size of the image is 256*256 as shown in Fig.5. 

In our scheme, the data owner needs to execute a simple 
preprocessing step, which is the calculation of the mean and 
standard deviation for each image in the database. Fig.3a shows 
the preprocessing time cost for the different dataset sizes. We 
can see that the preprocessing takes very little time and it will 
not cause problems for users. In particular, Fig.3b shows that 
the time required to compute the lower bound is unrelated to 
data dimensions. Therefore our scheme is suitable for solving 
the high-dimensional medical images problems. 

To evaluate the efficiency, we compared our scheme (FNN) 
with the Brute-Force search scheme (BF), which computes the 
Euclidean distance for all data items sequentially. Fig.3c shows 
the performance of two schemes for the exact nearest neighbor 
search on the original dataset and Fig.3d shows the results on 
the new 256*256 dataset. In the matter of the query processing 
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time, on both datasets the proposed scheme obviously 
outperforms the BF scheme. We can know that if the size of the 
image is reduced, the search time will be greatly reduced. 

Table I and Table II present more details about the 
performance of our scheme. Obviously, the time required to 
calculate the lower bound is almost negligible. The reject ratio 
of candidates refers to the proportion of data that can be 
excluded by comparing the lower bound of the squared 
Euclidean distance. And the reject ratio directly determines the 
performance of our scheme. In the datasets used in our 
experiments, the average reject ratio of the FNN scheme can 
reach more than 37%, which saves a lot of time. 

 

TABLE II 
DETAILED EXPERIMENTAL RESULTS FOR FNN ON 265*256 DATASET 

Numbers of data 100 200 300 400 500 
LB time(ms) 554.9 1098.5 1646.4 2195.6 2745.1 

Reject ratio(%) 31.0 31.0 35.7 38.3 42.4 
Search time(h) 1.78 3.54 4.95 6.33 7.47 

TABLE I 
DETAILED EXPERIMENTAL RESULTS FOR FNN ON 512*512 DATASET 

Numbers of data 100 200 300 400 500 
LB time(ms) 549.7 1121.4 1650.8 2148.8 2674.4 

Reject ratio(%) 39.0 38.5 42.0 40.3 40.8 
Search time(h) 6.39 12.76 17.93 24.66 30.44 

 
                                                    (a)                                                                                                                        (b) 

 
                                                    (c)                                                                                                                        (d)                             
Fig. 3.  Performance for the exact nearest neighbor search: (a) preprocessing time of FNN; (b) time of computing lower bound  
(c) query time on 512*512 dataset; (d) query time on 256*256 dataset 

 

Fig. 4.  Original images 512*512. 

 

Fig. 5. Intercepted images 256*256. 
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VI. CONCLUSION 

Cloud-based electronic healthcare systems will be increasing 
popular, particularly due to the capability to share and access 
data in real-time across organizations (e.g., between medical 
practitioners and healthcare providers) and countries. One 
process becomes challenging, if not impractical. 

In the paper, we presented a secure and efficient scheme to 
locate the exact nearest neighbor over encrypted medical 
images stored in the remote cloud server. For the purpose of 
rejecting candidate data points, our scheme securely computes 
the lower bound of the squared Euclidean distance between a 
data point in the database and the query submitted by a 
legitimate user. The performance of our scheme is evaluated 
using real-world medical images. 

Future research includes finding a real-world healthcare 
organization to design and implement a prototype of our 
proposed approach. This will allow us to evaluate the 
real-world utility of the proposed system as well as its 
scalability in practice. In addition, it will also allow us to 
identify weaknesses / limitations, if any, that we are not aware 
of. 
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