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A B S T R A C T

The rapid advancement in artificial intelligence and machine learning techniques, availability of large-scale
data, and increased computational capabilities of the machine opens the door to develop sophisticated methods
in predicting stock price. In the meantime, easy access to investment opportunities has made the stock market
more complex and volatile than ever. The world is looking for an accurate and reliable predictive model which
can capture the market’s highly volatile and nonlinear behavior in a holistic framework. This study uses a long
short-term memory (LSTM), a particular neural network architecture, to predict the next-day closing price of
the S&P 500 index. A well-balanced combination of nine predictors is carefully constructed under the umbrella
of the fundamental market data, macroeconomic data, and technical indicators to capture the behavior of the
stock market in a broader sense. Single layer and multilayer LSTM models are developed using the chosen
input variables, and their performances are compared using standard assessment metrics–Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE), and Correlation Coefficient (R). The experimental
results show that the single layer LSTM model provides a superior fit and high prediction accuracy compared
to multilayer LSTM models.
. Introduction

The stock price fluctuations are uncertain, and there are many
nterconnected reasons behind the scene for such behavior. The possible
ause could be the global economic data, changes in the unemployment
ate, monetary policies of influencing countries, immigration policies,
atural disasters, public health conditions, and several others. All the
tock market stakeholders aim to make higher profits and reduce the
isks from the thorough market evaluation. The major challenge is
athering the multifaceted information, putting them together into one
asket, and constructing a reliable model for accurate predictions.

Stock price prediction is a complex and challenging task for com-
anies, investors, and equity traders to predict future returns. Stock
arkets are naturally noisy, non-parametric, non-linear, and deter-
inistic chaotic systems (Ahangar, Yahyazadehfar, & Pournaghshband,
010). It creates a challenge to effectively and efficiently predict the
uture price. Feature selection from the financial data is another diffi-
ult task in the stock prediction for which many approaches have been
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suggested (Hoseinzade & Haratizadeh, 2019). There has been a trend in
which some researchers use only technical indicators, whereas others
use historical data (Di Persio & Honchar, 2016; Kara, Acar Boyacioglu,
& Ömer Kaan Baykan, 2011; Nelson, Pereira, & de Oliveira, 2017; Patel,
Shah, Thakkar, & Kotecha, 2015; Qiu & Song, 2016; Wang & Kim,
2018). The performance of the predictive model may not be top-notch
due to the use of limited features. On the flip side, if all the available
features from the financial market are included, the model could be
complex and difficult to interpret. In addition, the model performance
may be worse due to collinearity among multiple variables.

A proper model developed with an optimal set of attributes can
predict stock price reasonably well and better inform the market situa-
tion. A plethora of research has been published to study how certain
variables correlate with stock price behavior. A varying degree of
success is seen concerning the accuracy and robustness of the models.
One possible reason for not achieving the expected outcome could be
in the variable selection process. There is a greater chance that the
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developed model performs reasonably better if a good combination of
features is considered. One of the contributions of this study is selecting
the variables by looking meticulously at multiple aspects of the econ-
omy and their potential impact in the broader markets. Moreover, a
detailed justification is supplied why the specific explanatory variables
are chosen in the present context in Section 4.

The field of quantitative analysis in finance has a long history.
Several models ranging from naive to complex have been developed so
far to find the solution to financial problems. However, not all quanti-
tative analyses or models are fully accepted or widely used. One of the
first attempts was made in the seventies by two British statisticians,
Box and Jenkins, using mainframe computers (Hansen, McDonald, &
Nelson, 1999). They developed the Auto-Regressive Integrated Moving
Average (ARIMA) model utilizing only the historical data of price and
volume. The ARIMA is used to handle only stationary time series data
by default. Performance can be abysmal if it is used for non-stationary
data. Therefore, it is essential to convert non-stationary time series
data to stationary before implementation, which may lose the original
structure and interpretability of the feature. With very few exceptions,
almost all classical models assume that data has a linear relationship.
This assumption vividly raises the questions about the robustness of the
classical time series models as the real-world time series data are often
nonlinear.

Things were getting more interesting from the eighties because of
the development in data analysis tools and techniques. For instance, the
spreadsheet was invented to model financial performance, automated
data collection became a reality, and improvements in computing
power helped predictive models to analyze the data quickly and ef-
ficiently. Because of the availability of large-scale data, advancement
in technology, and inherent problem associated with the classical time
series models, researchers started to build models by unlocking the
power of artificial neural networks and deep learning techniques in
the area of sequential data modeling and forecasting. These methods
are capable of learning complex and non-linear relationships compared
to traditional methods. They are more efficient in extracting the most
important information from the given input variables.

Several deep learning architectures have been developed to deal
with various problems and the intrinsic structure of datasets. Informa-
tion flows only in the forward direction in a basic feedforward neural
network architecture. Since each input is processed independently,
it does not retain information from the previous step. Thus, these
models are ineffective in dealing with sequential data where series
of prior events are essential in predicting future events. Recurrent
neural networks (RNN) are designed to perform such tasks. The RNN
architecture consists of loops, allowing relevant information to persist
over time. Information is being passed from one timestep to the next
internally within the network. Therefore, the RNN is more suitable
for sequential data modeling and time series applications such as
stock market predictions, language translations, auto-completion in
messages/emails, and signal processing. During the training process of
the RNN, the cost or error is calculated between the predicted values
and the actual values from a labeled training dataset. The error is
minimized by repeatedly updating the networks’ parameters (weights
and biases) until the lowest possible value is obtained. The training
process utilizes a gradient, the rate at which cost changes with respect
to each parameter. The gradient provides a direction to move in the
error surface by adjusting the parameters iteratively. This strategy is
called backpropagation, where the error is propagated backward from
the output layer all the way up to the input layer. One of the challenges
of this technique is that parameters can be anywhere in the networks,
and finding a gradient involves calculations of partial derivatives with
respect to all the parameters. This process sometimes needs a long chain
rule, especially for the parameters in earlier layers of the networks. As
a result, gradients could ultimately vanish or decay back through the
networks, known as the vanishing gradient problem, a common issue
in neural networks training. Unfortunately, this problem also persists
2

in the RNN architecture. LSTM, a typical recurrent neural network
architecture, is designed to overcome the vanishing gradient prob-
lem (Hochreiter, 1998). Memorizing information for a longer period
of time is the default behavior of the LSTM model.

This study considers the computational framework to predict the
stock index price using the LSTM model, the improved version of neural
networks architecture for time series data. The bird’s-eye view of the
proposed research framework via the schematic diagram is expressed
in Fig. 1. As outlined in the diagram, the proposed study utilizes
the carefully selected features from fundamental, macroeconomic, and
technical data to build the model. After that, the collected data has
been normalized using the min–max normalization technique. Then
input sequence for the LSTM model is created using a specific time
step. The hyperparameters such as number of neurons, epochs, learning
rate, batch size, and time step have been incorporated in the model.
The regularization techniques have been utilized to overcome the over-
fitting problems. Once the hyperparameters are tuned, the input data
is fed into the LSTM model to predict the closing price of the stock
market index. The quality of the proposed model is assessed through
RMSE, MAPE, and R.

In a nutshell, plenty of research has been done in predicting the
stock market. Some research focuses on complex statistical or ma-
chine learning techniques without focusing on the type of attributable
variables. Others use only the fundamental data without exploring ad-
ditional factors that could influence the stock market prediction. There
is a need to develop a model with a good combination of features of
the stock market variables and simplicity in model architecture. Thus,
our contribution is to create a model without adding any complexity in
model architecture and maintaining well-balanced set of variables to
capture the behavior of the stock market from multiple dimensions.

The rest of the paper is organized as follows. Section 2 explains
the related work in this field. Section 3 explores the implementation of
the LSTM model in the S&P 500 data. The data collection and feature
selection procedure are explained in Section 4. Model outcomes are
discussed in Section 5. It also explains the predictive capability of the
model after tuning the hyperparameters. Finally, Section 6 presents
the conclusion and future work, followed by acknowledgments, list of
references, and appendix.

2. Related work

Chen et al. used the LSTM model to predict China stock returns
(Chen, Zhou, & Dai, 2015). The historical data was transformed into 30-
days long sequences with ten learning features and 3-day learning rate
labeling. The authors claimed that the model improved the accuracy
from 14.3% to 27.2% compared to the random prediction method. Bao
et al. applied the Haar wavelet transformation to denoise the financial
time series data and implemented the stacked autoencoders to learn the
deep features of the data and then used LSTM to predict the closing
price of stock indices (Bao, Yue, & Rao, 2017). Their average R score
was below 88% on the LSTM model for S&P 500. Roondiwala et al.
used the LSTM model for the NIFTY 50 data ranges from 2011 to 2016
(Roondiwala, Patel, & Varma, 2017). The authors used fundamental
data (open, close, low, and high) without incorporating macroeconomic
and technical indicators to predict the closing price.

Fischer and Krauss used LSTM networks for the classification prob-
lem of predicting directional movements for the constituent stocks
of S&P 500 from 1992 until 2015 (Fischer & Krauss, 2018). The
authors concluded that the LSTM network could effectively extract
meaningful information from the financial time series data. Based on
prediction accuracy and daily returns after transaction costs, LSTM
outperforms random forests, standard deep networks, and logistic re-
gression. Qiu et al. implemented LSTM based model on historical data
of S&P 500, Dow Jones Industrial Average (DJIA), and Hang Seng
Index dataset (Qiu, Wang, & Zhou, 2020). They applied an attention
mechanism extracting the information in the news to evaluate the price
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Fig. 1. Schematic diagram of the proposed research framework.
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fluctuation. The authors denoised the data using wavelet transforma-
tion and then implemented their attention-based LSTM framework to
predict the opening index price using only fundamental market data.
Lanbouri and Achchab used the LSTM model for the high-frequency
trading perspective in which their goal was to use the S&P 500 stock
trading data to predict the stock price in the next 1, 5, and 10 min-
utes (Lanbouri & Achchab, 2020). Yadav et al. implemented LSTM
model with various hidden layers to Indian stock market data removing
the trend and seasonality components to predict the closing price (Ya-
dav, Jha, & Sharan, 2020). They concluded that the single layer LSTM
model had better prediction accuracy.

Kara et al. used support vector machine (SVM) and artificial neural
network to predict movement in the daily Istanbul Stock Exchange
National 100 Index from 1997 to 2007 (Kara et al., 2011). The authors
selected ten technical indicators as input for their model. Experimental
results showed that the average performance of the artificial neural
network model was significantly better than that of the SVM model.
Karmiani et al. compared LSTM, Backpropagation, SVM, and Kalman
filter to predict stock price (Karmiani, Kazi, Nambisan, Shah, & Kam-
ble, 2019). The stock price of selected nine companies were considered
for the prediction. LSTM was the best choice in terms of prediction
accuracy with low variance. Yu and Yan combined phase-space recon-
struction method for time series analysis and LSTM model to predict
the stock price (Yu & Yan, 2019). Various market environments such
as the S&P 500, DJIA, Nikkei 225, Hang Seng Index, China Securities
Index 300, and ChiNext index were considered for the analysis. This
prediction model was built by taking the historical price only. The out-
comes of LSTM with Multilayer Perception, Support Vector Regressor,
and ARIMA were compared. Authors claimed that the LSTM model
outperformed other models for S&P 500 data. Gao et al. conducted a
comparative study of four machine learning algorithms —Multilayer
Perceptron, LSTM, Convolutional Neural Network, and Uncertainty-
Aware Attention —to predict the next day’s stock price (Gao, Zhang, &
Yang, 2020). The S&P 500 index, CSI 300 index, and Nikkei 225 index
were taken to represent the most developed market, the less developed
market, and the developing market. Open price, close price, trad-
ing volume, Moving Average Convergence Divergence, Average True
Range, exchange rate, and interest rate were considered predictors. The
outcome of the study suggested that Uncertainty-Aware Attention’s per-
formance was slightly better than other models. Moreover, additional
predictors such as the volatility index and the unemployment rate could
improve the model’s performance.

3. Modeling approach

3.1. A brief overview of LSTM

LSTM is a popular deep learning technique in RNN for time series
prediction. For example, LSTM is used for both classification and regres-

sion problems not only for the stock market prediction but the rainfall t

3

runoff modeling (Kratzert, Klotz, Brenner, Schulz, & Herrnegger, 2018),
fMRI data analysis (Rahman et al., 2020), anomaly detection (Lin-
demann, Maschler, Sahlab, & Weyrich, 2021), mobile traffic predic-
tion (Trinh, Giupponi, & Dini, 2018) to name a few. Although standard
RNN is superior to traditional networks in preserving the information,
it is not effective in learning long-term dependencies due to the van-
ishing gradient problem (Hochreiter, 1998). LSTM uses memory cells to
overcome the issue of vanishing gradients. It consists of an input layer,
a hidden layer, a cell state, and an output layer (Gers, Schmidhuber, &
Cummins, 2000; Gers, Schraudolph, & Schmidhuber, 2003; Hochreiter
& Schmidhuber, 1997). The key component of LSTM architecture is the
cell state which runs through the chain, with only linear interaction,
keeping information flow unchanged. The gate mechanism of LSTM
deletes or modifies the information of the cell state. It is a way to
pass the information selectively that consists of the sigmoid layer,
hyperbolic tangent layer, and the point-wise multiplication operation.

Fig. 2 illustrates the architecture of LSTM at time 𝑡 which is designed
to model sequential input. In particular, four gates —output, change,
input, and forget —are shown with their operations at time 𝑡.

For a given input sequence {𝑥1, 𝑥2,… , 𝑥𝑛}, 𝑥𝑡 ∈ R𝑘×1 is the input
sequence at time t. The memory cell 𝑐𝑡 updates the information using
three gates: input gate 𝑖𝑡, forget gate 𝑓𝑡, and change gate 𝑐𝑡. The hidden
state ℎ𝑡 is updated using output gate 𝑜𝑡 and the memory cell 𝑐𝑡. At time
t, the respective gates and layers compute the following functions:

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖),

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓 ),

𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜),

𝑐𝑡 = tanh(𝑊𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐 ),

𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝑐𝑡,

𝑡 = 𝑜𝑡 ⊗ tanh(𝑐𝑡)

here, 𝜎 and tanh represent the sigmoid and hyperbolic tangent func-
ions respectively, the operator ⊗ is the element-wise product, 𝑊 ∈
𝑑×𝑘,𝑊ℎ ∈ R𝑑×𝑑 are weight matrices, and 𝑏 ∈ R𝑑×1 are bias vectors.
oreover, 𝑛, 𝑘, 𝑑 are sequence length, the number of features, and the

idden size respectively (Greff, Srivastava, Koutník, Steunebrink, &
chmidhuber, 2017; Lei, Liu, & Jiang, 2019; Qiu et al., 2020).

LSTM cell takes 3 different pieces of information: the current input
equence 𝑥𝑡, the short-term memory from the previous cell ℎ𝑡−1, and
he long-term memory from the previous cell state 𝑐𝑡−1 at time 𝑡. The
orget gate takes the information from 𝑥𝑡 and ℎ𝑡−1 and produces the
utput between 0 and 1 through the sigmoid layer and then it identifies
hich information to discard from the previous cell state 𝑐𝑡−1. When

he value is 1, it stores all the information into the cell while with a
alue of 0, it forgets all the information from the previous cell state.
imilarly, the input gate identifies which information to be updated
rom the change gate. The output gate decides which information to be

aken as an output from the present cell state.
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Fig. 2. Long short-term memory (LSTM) architecture.
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3.2. Proposed model framework

For a given multivariate financial time series data collected from
different sources, the goal of the proposed model is to predict the next
day closing price using a multivariate sequence of input features. The
following LSTM implementation procedures are considered to accom-
plish this task. From the original dataset 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑛) of size 𝑘×𝑛,
he sequences {𝑥1, 𝑥2,… , 𝑥𝑛−1} and {𝑦1, 𝑦2,… , 𝑦𝑛−1} are created, where
𝑡 ∈ R𝑘×1 is the input sequence and 𝑦𝑡 ∈ R is the next day closing
rice at time t. Here 𝑘 and 𝑛 are number of input features and the total
umber of observations respectively.

Furthermore, to incorporate the required dimension of LSTM archi-
ecture, input sequence 𝑋𝑡 is created by taking 𝑚 continuous sequence
𝑡 ∶ 𝑥𝑡+𝑚−1 which is a matrix of shape 𝑘 ×𝑚 for 𝑡 ∈ {1, 2,… , 𝑛−𝑚− 1}.
he output ℎ𝑡 of LSTM is a feature representation for the input sequence
𝑡 at time 𝑡. Mathematically, ℎ𝑡 can be expressed as follows:

𝑡 = 𝐿𝑆𝑇𝑀(𝑋𝑡, ℎ𝑡−1, 𝑐𝑡−1, 𝑤)

here 𝑤 denotes all learnable parameters. Since the final hidden state
𝑓 encodes the most information from the input sequence, it is con-
erted to a vector using a dense layer.

Fig. 3 represents the proposed model framework. The input se-
uence is created using 𝑘 = 11 features with time step m, as shown
n top part of the figure. Then at time 𝑡 − 1, the input 𝑋𝑡−1, a matrix
f size 11 × 𝑚, together with ℎ𝑡−2 and 𝑐𝑡−2 is fed into the LSTM. For
he next step, the output ℎ𝑡−1 of the previous step, together with input
equence 𝑋𝑡 and the cell memory 𝑐𝑡−1 become input for LSTM. This
rocess continues until the final input sequence 𝑋𝑓 with corresponding
utput ℎ𝑓 , a vector of length equal with given number of neurons of
he last LSTM layer. Finally, ℎ𝑓 is transmitted to a fully connected layer
here linear activation function is used to predict the closing price as

hown in the last part of Fig. 3.

.3. Algorithms and pseudo code

lgorithm 1 (Pseudo Code for Hyperparameter Tuning Procedure). Input
reparation: Split train and validation data sets and create input of the form
#observations, time step, #features]
nput: [#observations, time step, #features]; choices of optimizers, learning
ates, and batch sizes.

nitialize: Set number of epochs sufficiently large and patience = 5

4

For ‘‘choice of optimizers’’, Do
For ‘‘choice of learning rates’’, Do
For ‘‘choice of batch sizes’’, Do

For ‘‘range of number of replicates’’, Do
Train the model, monitor validation loss;
Continue Until training loss at epoch 𝑛 ≤ training loss
at epoch 𝑛 + 1 ≤ ⋯ ≤ training loss at epoch 𝑛 + 4, Or
maximum epochs are reached.
Evaluate model on the validation data.
Calculate RMSE scores.

End Do.
Calculate average RMSE scores.

End Do.
End Do.

End Do.
utput Set of best hyperparameters, average RMSEs, best average RMSE.

lgorithm 2 (Pseudo Code for LSTM Model after Hyperparameter Tuning).
nput Preparation: Split train and test data sets and create input of the form
#observations, time step, #features)
nput: [#observations, time step, #features]; chosen hyperparameters (opti-
izer, learning rate, batch size) obtained from Algorithm 1 for each model.

nitialize: Set number of epochs sufficiently large and patience = 5

For ‘‘choice of layers and neurons’’, Do
For ‘‘range of number of replicates’’, Do

Train the model, monitor training loss;
Continue Until training loss at epoch 𝑛 ≤ training loss
at epoch 𝑛 + 1 ≤ ⋯ ≤ training loss at epoch 𝑛 + 4, Or
maximum epochs are reached.
Evaluate model on the test data.
Calculate RMSE, MAPE and R scores.

End Do.
Calculate minimum, maximum, average and standard deviation of
RMSE, MAPE and R scores.
Save key results in respective files.

End Do.
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Fig. 3. The proposed model architecture for index price prediction.
Table 1
List of potential features for the model.

Data Source Frequency Abbreviation

Fundamental
Open price Yahoo Daily ⋯
Close price Yahoo Daily ⋯

Macroeconomic
Cboe volatility index Yahoo Daily VIX
Interest rate FRED Daily EFFR
Civilian unemployment rate FRED Monthly UNRATE
Consumer sentiment index FRED Monthly UMCSENT
US dollar index Yahoo Daily USDX

Technical indicator
Moving average convergence divergence ⋯ Daily MACD
Average true range ⋯ Daily ATR
Relative strength index ⋯ Daily RSI

4. Dataset preparation

In this study, S&P 500, a popular US stock market index, is used for
the model prediction. The process of feature selection includes identi-
fying the core factors that contribute to the index value fluctuations.
Some features, such as fundamental data and technical indicators, are
directly extracted from the underlying index. Other factors, namely
macroeconomic variables, are selected based on their potential impact
on the overall economy and broader markets. A complete 15 years of
data have been collected from 2006 to 2020. The time frame selection
incorporates two major bear markets, the financial crisis in 2008 and
the COVID-19 pandemic in 2020. Thus, the construction of the model,
including both bear and bull market, resembles the overall market
scenario and may lead to a better prediction.

We start with a brief description of the features used in the proposed
model. The closing price is predicted based on the fundamental trading
data, macroeconomic data, and technical indicators of the underlying
index. A combination of all the features from three different categories
presented in Table 1 is input features. All the available features except
Civilian Unemployment Rate and Consumer Sentiment Index are by de-
fault daily data. We have converted the monthly data to daily through
the forward filling method to have uniformity among the variables.

4.1. Fundamental data

The first set of variables presented in Table 1 are fundamental data
or historical data which provides basic information required for stock
trading. It consists of open price, and the close price. Open price is the

first transaction price upon the opening of a market on a trading day,

5

whereas the closing price is the last price at which the stock is traded
during that day. All the historical trading data accessed from Yahoo are
daily data.

4.2. Macroeconomic data

The second set of variables demonstrated in Table 1 are macroeco-
nomic variables that significantly influence stock market performance,
explaining more potential information in stock price prediction. We
have chosen Cboe Volatility Index (VIX), Interest Rate (EFFR), Civilian
Unemployment Rate (UNRATE), Consumer Sentiment Index (UMC-
SENT), and US dollar index (USDX) under the macroeconomic factor.
These variables are the representative features that explain the status
of the economy as a whole in the proposed model.

VIX, sometimes called an investor’s fear index, measures the 30-day
expected volatility of the stock’s market based on the S&P 500 index
options. It is maintained by the Chicago Board Options Exchange, the
largest derivatives (options) exchange in the US. There is an asym-
metric relationship between VIX and stock market returns (Chandra
& Thenmozhi, 2015; Sarwar, 2012). VIX indicates how investors and
equity traders are thinking about the overall health of the current econ-
omy and near-term market fluctuations based on the options market
activities. Therefore, it can provide a significant contribution to the
proposed predictive model (Ruan, 2018). The real-time VIX index data
is publicly available on different platforms, but this study uses the data
from Yahoo Finance.

The federal funds rate is the interest rate at which financial insti-
tutions, also known as depository institutions, trade federal funds with
each other overnight. These federal funds are balances held at Federal
Reserve Banks. If a depository institution has a surplus in balances in
its reserve account, it will lend to other institutions that need a larger
sum of balances with the interest rate negotiated between them. The
weighted average of all these types of interest rates is called EFFR. The
3-month Treasury bill rate and federal fund rate are two key US money
market interest rates (Sarno & Thornton, 2003). Thus, EFFR affects
the various US economic conditions; including inflation, growth, and
employment. Bernanke and Kuttner (2005) studied the effects of the
changes in monetary policy on equity prices. The authors concluded
that the decrease in federal fund interest rate increase the broad
stock price. The interest rate has a significant impact on corporate
profitability and margin transactions, thus, it influences the stock price.
The EFFR is calculated daily by the Federal Reserve Bank of New
York. We accessed the data from the Federal Reserve Bank of St. Louis.
The published rates are the volume-weighted median transacted rate,

rounded to the nearest basis point.
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UNRATE measures the percentage of the US labor force unemployed
in the economy. An upward trend in UNRATE reflects the downtrend
in the economy, whereas its downward trend signifies the healthy and
growing economy. It has been used for the stock price prediction and
is considered a significant predictor of stock price (Farsio & Fazel,
2013; Loungani, Rush, & Tave, 1990; Pan, 2018). The authors of the
article (Bock, 2018) assert that UNRATE strongly affects the stock
market and further investigate the possibility to construct a profitable
investment strategy before it is officially published. The monthly data
of UNRATE is accessed from the FRED.

UMCSENT is the monthly data accessed from the FRED. It is calcu-
lated based on a household survey of consumers’ opinions on current
economic conditions and the index of the future expectations. It is
used to evaluate short-term views of customers on the economy, their
income, and spending. Thus, it provides the consumer’s level of opti-
mism or pessimism that helps to predict the short-term and long-term
economy. The UMCSENT with momentum factors plays a vital role in
the stock price prediction (Benhabib, Wang, & Wen, 2015; Lansing &
Tubbs, 2018; Otoo, 1999). It has direct (Baker & Wurgler, 2007) or
indirect (Stambaugh, Yu, & Yuan, 2012) effect on stock returns.

The US Dollar Index (USDX) is a geometrically averaged calculation
of six major world currencies weighted against the US dollar (Samanta
& Zadeh, 2012). International Currency Exchange compiles, maintains,
and weights the components of the index. It measures the strength of
the US dollar relative to the world’s major currencies. The index value
is affected by economic conditions in the US and abroad. Since the US
currency is a new gold standard for the inter-continental trades and
currency exchanges, the index value also fluctuates with the interest
rate policy, foreign investment policy, and volatility of the overall
markets. Generally, the value of US equities tends to increase along
with the demand for the US dollar; therefore, they have a positive
correlation (Novianti, 2016). The world economy is directly or indi-
rectly interconnected with the US economy. For instance, the exposures
of the US-listed companies globally for their supply-chain targeted
consumers and investment options, the fluctuation of dollar index value
can significantly contribute to the proposed model. There are several
tickers available for the index with a slightly different basis point. For
this study, the index with ticker DX-Y.NYB is obtained from Yahoo,
which is available daily.

4.3. Technical indicators

The last set of variables demonstrated in Table 1 are the tech-
nical indicators, including Moving Average Convergence Divergence
(MACD), Average True Range (ATR), and Relative Strength Index (RSI).
A technical indicator is a mathematical calculation performed on vari-
ables like price or even another technical indicator. Active traders
extensively use them in the market as they are primarily designed to
analyze short-term price movements.

MACD, developed by Gerald Appel, is one of the widely applied
technical indicators (Wang & Kim, 2018). It is a momentum oscilla-
tor calculated by subtracting the 26-day exponential moving average
(EMA) from the 12-day EMA (Murphy, 1999). EMA differs from a
simple moving average as it assigns more weight to the later data
values. Traders use the MACD for determining the trend, direction,
momentum, and potential reversals of the stock price. For example, if
the MACD curve crosses the zero line from below, it signals the buying
opportunity. Similarly, when it crosses the zero line from above, it
signals a sell. Research results indicate significant possibilities of MACD
indicator for making optimal investment decisions (Chong & Ng, 2008;
Chong, Ng, & Liew, 2014; Eric, Andjelic, & Redzepagic, 2009). Anghel
(2015) used data from different countries to evaluate market efficiency
worldwide using MACD.

J. Welles Wilder Jr. has been credited for developing many technical
indicators of the stock market. We consider the most popular volatility-

based technical indicators, ATR and RSI (Wilder, 1978). ATR describes

6

how volatile a stock has been on average over a particular period of
time. Stock traders use this indicator as a risk management strategy to
set the exit level. It can also be useful to sense how strong price moves
are, which is beneficial to identify the start of the trend. ATR is based on
the concept of true range, which is a way of measuring a stock’s trading
range that elucidates for gap openings. The gap indicates the stock’s
opening higher or lower relative to the previous day’s closing price.
Averaging out a stock’s daily true range over a specified period provides
ATR. Commonly used ATR periods are 14, 20, and 22 days. This study
considers the 14 days period, which is also considered the default
period in many platforms. Incorporating ATR to gauge the stock moves
certainly adds some level of contribution in predicting the closing price.

RSI is a recognized technical indicator in stock price
prediction (Rodríguez-González, García-Crespo, Colomo-Palacios, Igle-
sias, & Gómez-Berbís, 2011). It is an oscillating indicator constructed
to measure the stock’s momentum to provide bullish and bearish price
signals. Investors use this indicator to identify security overbought or
oversold. RSI may be helpful to determine potential entry and exit
trading signals as well. In addition, RSI plays an essential role in
predicting the stock price trend for a shorter time, as it compares the
magnitude of recent gains to recent losses.

4.4. Feature selection strategy

All the input variables explained above have some level of contribu-
tion in predicting the closing price. A correlation heatmap of all input
features explained above is presented in Fig. 4. The numerical value
in the heatmap represents the correlation between the variables on the
horizontal and the vertical axes. For instance, the diagonal value of
the matrix is 1, the correlation between the variable to itself. Thus,
the values on the diagonal are unimportant in our analysis. The entries
on the off-diagonal are used for the feature selection process. These
values are presented based on the intensity of the color, which is also
the indicator of the level of relationship between the given variables.
The vertical bar next to the graph shows the intensity of the color on
the scale from 0 to 1. The correlation between the closing price and the
remaining variables may be high or low. It indicates the intensity of
the relationship. For example, the correlation between closing price to
consumer sentiment index is 0.67, which is moderately positive. Thus,
the consumer sentiment index may play a vital role in the closing price
prediction. The same explanation applies to the rest of the entries pre-
sented in the graph. Most importantly, the high correlation (positive or
negative) between the predictors can behave as a duplicate feature. In
such case, either one of the highly correlated variables can be dropped
from the analysis. For instance, open price and closing price have a
strong correlation, indicating duplicate features. One of the features
can be discarded because it will not provide significant additional
information for the prediction. In this study, the open price has been
dropped from further analysis. The correlation coefficient of 0.80 is
considered as a threshold for removing the duplicate features. After
removing the open price, none of the pair-wise correlations between
the remaining variables exceeds the threshold. The heatmap validates
the statistical significance of the variables chosen for the prediction.

After careful analysis of heatmap in the feature selection process,
the 11 variables are considered as input variables. The partial snapshot
of the dataset used in the study is presented in Table 2.

4.5. Data denoising, normalization and input preparation

Stock price data are noisy and are in sequential discrete format.
The discrete Wavelet transformation is common to denoise time-series
data. Haar wavelets are the most suitable and popular in stock price
data (Chaovalit, Gangopadhyay, Karabatis, & Chen, 2011; Ortega &
Khashanah, 2014). We have applied the soft mode of the Haar wavelets
using python library scikit-image to denoise the close price of the index.

The values of input variables vary from one to another; thus, it leads
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Fig. 4. Correlation heatmap among the attributable variables. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 2
Snapshot of the dataset.

Date Close MACD RSI ATR VIX USDX EFFR UNRATE UMCSENT

2006-01-24 1266.8599 −0.1018 38.3361 14.9114 13.31 88.0599 4.28 4.7 91.2
2006-01-25 1264.6801 0.7335 36.1706 14.7356 12.87 88.3300 4.36 4.7 91.2
2006-01-26 1273.8299 0.6497 49.8817 14.5230 12.42 88.6200 4.37 4.7 91.2
2006-01-27 1283.7199 −0.2123 60.4715 14.3821 11.97 89.3200 4.42 4.7 91.2
2006-01-30 1285.1899 −1.0026 61.8538 13.6712 12.39 89.4199 4.48 4.7 91.2
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
2021-09-28 4419.5400 14.4707 32.4778 47.4541 23.5000 93.7700 0.08 4.7 72.8
2021-09-29 4362.4102 18.7500 34.4857 46.4174 22.5600 94.3400 0.08 4.7 72.8
to a high level of variation. For instance, the stock index close price
is much higher than the interest rate. More specifically, the standard
deviation of the close price is 695.33, which is significantly higher than
the standard deviation 1.664 of the interest rate. If the range of one
feature varies more widely than the others, most ML algorithms might
not perform well. We have implemented a min–max normalization
technique for the feature scaling to address this concern. The min–max
normalization technique is expressed in the following equation,

𝑧 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
where, 𝑧, 𝑥 are scaled and the original input respectively. Similarly,
𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and the maximum values of the input
espectively.

The transformed data at this point is two-dimensional array (num-
er of observations, number of features). LSTM model expects three-
imensional input data (number of observations, size of time step,
umber of input features). Therefore, the necessary steps are considered
o make the input data compatible to the model. Due to the nature
f time series data, first, we split the complete data into 80%–20%
or the train-test datasets by maintaining the order of time series. We
urther divide the training data as 80%–20% of which the last 20%
accounting 16% of the total data) is used for validation purpose during
yperparameter tuning. Once we are done with the hyperparameters
uning, the validation set is included back in the training data. Then
he final models are fitted on the complete training data with optimized
yperparameters. Finally, the performance scores are reported on the
est data.
7

5. Experiment and results

As described in the previous section, normalized data has been
constructed with the selected features. Also, necessary steps are taken
to reshape and split the data into training and testing data sets. The goal
is to predict the closing price of the S&P 500 index with high accuracy,
which exhibits complex, noisy, and volatile behavior as shown in
Fig. 5. The black curve represents the original time series of the closing
price (vertical axis) within the interval of 01/03/2006–09/29/2021
(horizontal axis). Similarly, blue and green curves represent 50-day
and 200-day moving averages to visualize the short-term and long-
term trends of the closing price. The closing price’s overall direction
is upward despite having various irregularities.

5.1. Model performance metrics

We implement single layer and multilayer LSTM architecture to pre-
dict the closing price. Within each of these models, several options are
considered with different number of neurons. Prediction accuracy and
reliability of these models are assessed by calculating three different
performance metrics —RMSE, MAPE, and R. The analytical form of
these metrics are defined as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1

𝑁
∑

(𝑦𝑖 − 𝑦𝑖)2,
𝑁 𝑖=1
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𝑅

Fig. 5. S&P 500 closing price along with moving averages. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 3
Computing environmental condition.

Machine configuration Google Colab with NVIDIA-SMI 495.44 GPU

Environment Python 3.6.0, TensorFlow, and Keras APIs
Architecture Single layer and multilayer LSTM

𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

,

=
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)(𝑦𝑖 − ̄̂𝑦𝑖)
√

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)2(𝑦𝑖 − ̄̂𝑦𝑖)2

where,

𝑦𝑖 : Original time series,

𝑦𝑖 : The average value of the original time series,

𝑦𝑖 : Predicted time series computed from the model,

̄̂𝑦𝑖 : Average value of the predicted time series,

𝑁 : Number of observations.

Among three prediction metrics, RMSE measures the square root
of the mean square error of the actual values and estimated values,
MAPE estimates the size of the error computed as the relative average
of the error, and R determines the linear correlation between actual
and predicted values. Smaller the values of RMSE and MAPE, better the
performance of the model. On the contrary, larger value of R indicates
the similarity between predicted and actual series. Moreover, perfor-
mance scores are calculated after applying the inverse transformation
in the predictions obtained from the normalized data. Each model
are executed multiple times independently in order to address the
stochastic behavior. Average RMSE score obtained from these multiple
replicates is considered as a primary model selection criteria followed
by average MAPE and R scores. A model with the smallest RMSE and
MAPE along with the greatest possible R would be considered as the
best model.

Table 3 summarizes the experimental environment for this study.
The experiment uses python programming environment along with
TensorFlow and Keras APIs. All the experiments are conducted in a

machine configuration as stated in Table 3.

8

5.2. Hyperparameter tuning

The final optimal model architecture is selected by exploring a
wide range of possibilities. The overall model selection procedure is
divided into two broad categories —(a) single layer LSTM and (b)
multilayer LSTM. The single layer LSTM model consists of a only
one LSTM layer in the model whereas the multilayer LSTM model
consists of more than one LSTM layer in the model. For each of these
categories, the process is further divided into two phases —(i) tuning
hyperparameters and (ii) training the model in full scale with the
respective optimized hyperparameters. In the first phase, the values
of hyperparameters —optimizer, initial learning rate, and batch size
—are optimized using the validation data. For the single layer LSTM
architecture, six different models with 10, 30, 50, 100, 150, and
200 neurons are experimented with optimizers Adam, Adadelta, and
Nadam; learning rates 0.1, 0.01, and 0.001; and the batch sizes 4,
8, and 16; resulting 27 different combinations of hyperparameters for
each model. Every model is executed 10 times for each combination of
hyperparameters and the average RMSE score is calculated. The best
possible combination of hyperparameters for the given model is chosen
based on the lowest average RMSE score on the validation data. Table 4
provides the list of the best hyperparameters for all six single layer
LSTM models. Furthermore, the complete validation results of all 27
different combinations for the 10 neurons model are provided in the
Table 5. This table shows that the lowest average RMSE value is 28.65,
which corresponds to the Adam optimizer with the learning rate of
0.001 and the batch size 8. Hence the Adam optimizer with the learning
rate of 0.001 and batch size 8 is chosen to train the 10 neuron model
in the full scale. The detailed validation results for remaining models
are provided in the Tables A.10–A.14 in Appendix A.

Similarly, the best hyperparameters are identified for six different
multilayer LSTM models with (10, 5), (20, 10), (50, 20), (100, 50), and
(100, 50, 20) neurons. Here, the first and second hidden layers is rep-
resented as (𝑛1, 𝑛2). The same explanation is applicable as the number
of hidden layers increases. The list of the best hyperparameters for each
multilayer model can be found in Table 6 and the complete validation
results of all 27 different combinations for the (10, 5) neurons model
are provided in the Table 7. The validation results for other models are
presented in Tables B.15–B.19 in Appendix B.

5.3. Single layer LSTM results

In the previous section, we have discussed about the process of
identifying the best hyperparameters for each model with an extensive,
thorough, and data-driven approach. Using the best hyperparameters
presented in Table 4, we further train all six single layer models with
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Table 4
List of the best hyperparameters for single layer LSTM models.

No. of Neurons Optimizer Learning rate Batch size

10 Adam 0.001 8
30 Adagrad 0.01 8
50 Adagrad 0.01 8
100 Adagrad 0.01 16
150 Adagrad 0.01 16
200 Adagrad 0.001 4

Table 5
Hyperparameter tuning for 10 neurons single layer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 33.54 33.32 32.94
0.01 30.55 30.01 29.61
0.001 28.85 28.65 29.10

Adagrad
0.1 28.82 28.69 28.91
0.01 29.92 31.12 33.19
0.001 38.95 45.28 51.36

Nadam
0.1 51.09 53.71 56.80
0.01 55.15 54.53 54.35
0.001 53.33 52.48 51.59

Table 6
List of the best hyperparameters for multilayer LSTM models.

No. of neurons Optimizer Learning rate Batch size

(10, 5) Adagrad 0.1 4
(20, 10) Adagrad 0.01 16
(50, 20) Adagrad 0.01 16
(100, 50) Adagrad 0.01 16
(150, 100) Adagrad 0.01 16
(100, 50, 20) Adagrad 0.001 8

Table 7
Hyperparameter tuning for (10, 5) neurons multilayer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 51.00 57.27 53.42
0.01 46.77 42.67 39.88
0.001 38.13 36.67 35.84

Adagrad
0.1 35.17 34.70 34.79
0.01 34.52 34.42 36.11
0.001 39.10 42.29 46.19

Nadam
0.1 50.46 54.28 57.43
0.01 56.31 55.92 56.03
0.001 54.75 53.43 52.72

the training data set (i.e. 80% of the total data set) and select the best
model on the basis of average performance scores calculated on the
test data set. Each experiment is replicated a sufficiently large number
of times (30 times) to maximize model reliability. The results suggest
that the model with 150 neurons outperforms its competitors in RMSE,
MAPE, and R as shown in Table 8. Thus, a single layer LSTM model with
150 neurons can be considered as the winner among other candidates.

Fig. 6 illustrates the graphical representation of the data entries
of average scores via line graph. The subplots (a) and (b) reveal the
overall patterns of average RMSE and MAPE scores. From the figure,
we observed that the average RMSE and MAPE scores increase until
the neurons reaches 30 and then gradually decrease until 150 neurons.
Average scores show increasing trend afterwards. The average R is
going down while average RMSE and MAPE scores increases on the
range of neurons from 10 to 30, then it increases steadily until the
neurons reaches 150, there is a drop in the average R score afterwards
as shown in subplot (c). Looking at the overall trend of all the perfor-
mance metrics, a model with 150 neurons seems to be the best among
the single layer models.
 p

9

Table 8
The performance scores of the single layer LSTM models in the test data.

Metrics Neurons → 10 30 50 100 150 200

RMSE

Min 34.7359 43.8253 38.5586 37.2795 37.9416 62.1324
Average 49.9564 57.0731 47.1908 42.7093 40.4574 73.1992
Max 77.4861 72.1660 60.7464 49.4979 43.4026 88.8964
Std 9.7758 8.0805 4.9642 2.9514 1.3957 5.3066

MAPE

Min 0.7511 0.8959 0.7657 0.7287 0.7008 1.5401
Average 1.1264 1.2375 0.9759 0.8691 0.7989 1.856
Max 1.6124 1.5081 1.2409 1.1089 0.9768 2.3210
Std 0.2513 0.1762 0.0995 0.0912 0.0584 0.1586

R

Min 0.9958 0.9946 0.9967 0.9969 0.9974 0.9903
Average 0.9972 0.9962 0.9972 0.9974 0.9976 0.9937
Max 0.9983 0.9973 0.9977 0.9978 0.9979 0.9953
Std 0.0006 0.0007 0.0003 0.0002 0.0001 0.0010

No. of parameters 891 5071 12451 44901 97351 169801

Figs. 7 and 8 visualize the quality of the prediction obtained from
the best model with 150 neurons. The scatter plot of the true values
versus the predicted values of closing price for training and test data
are plotted in Fig. 7(a) and (b) respectively. This plot is useful to gauge
the goodness of fit of the model. The best-fit linear equation (𝑦 = 𝑥)
s shown in Fig. 7 by the red dotted line. The performance of the
est model is slightly better in the training set compared to the test
et, which is as expected. In the test data, the predicted closing price
s deviated a bit from the true closing price in the range of 2400 to
200, possibly due to the unusual market circumstances created by the
OVID-19 pandemic in 2020.

Fig. 8 represents the original closing price together with predictions
btained from the replication with the lowest RMSE score of the best
ingle layer model. In subplot (a), the black curve represents the actual
alues of the closing price, whereas the blue and the green curves
epresent the predictions in the training and test data, respectively.
ubplot (b) is the magnified portion of the subplot (a) that consists of
he true and predicted closing price on the test data. The prediction
urve of the closing price for training data almost overlaps with the
urve of the true closing price, as shown in subplot (a). This suggests
hat the best model can learn both upward and downward movement
f the original closing price almost exactly. The quality of the fit is
lso impressive in the test data, as demonstrated in the later portion
f the subplot (a) or in a magnified subplot (b). Although the test
rediction curve does not seem to overlap exactly with the actual
losing price, the model captures the overall trend of the test data with
inor errors. Moreover, Fig. 8(b) depicts that the model is well fitted

ven in the unusual market circumstances, where there is a sudden
ignificant drop in the market and then a sharp V-shaped recovery.
his particular section of the test data corresponds to the year 2020,
hen the COVID-19 pandemic badly impacted the stock markets, thus
aking it highly volatile. The ability to predict such complex and noisy
arket fluctuations further validates the robustness and resilience of

he proposed model. This suggests that the model does not suffer from
verfitting and is well-suited for predicting the out-of-sample data.

.4. Multilayer LSTM results

The prediction results obtained from single layer LSTM architecture
iscussed in previous section suggest that a model with 150 neurons
eems to produce impressive predictions. Even though single layer
STM architecture provides compelling results, we want to explore the
ossibility of further improvements via multilayer LSTM architecture.
he primary objective of this investigation is to improve the prediction
ccuracy in conjunction with maintaining model simplicity.

Using the best hyperparameters presented in Table 6, we train all six
ultilayer LSTM models with the training data set and select the best
odel on the basis of average performance scores calculated on the

est data set. Each experiment is replicated 30 times. The data entries

resented in Tables 9 are the performance metrices of multilayer LSTM
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Fig. 6. The line plot of the performance metrics of the single layer LSTM models with different neurons.
Fig. 7. Scatter plot of true vs predicted closing price of the best single layer LSTM model (with 150 neurons) on (a) training data and (b) test data.
Fig. 8. Plots of the true closing price together with its predictions on the training and test data obtained from the replicate with lowest RMSE of the best single layer LSTM
odel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
odels. The table shows that the model with (150, 100) neurons is the
est among candidates for the multilayer LSTM. Moreover, it reveals
he fact that multilayer LSTM does not improve the performance as
ompared to single layer LSTM. The possible reason for not improving
he result could be over-fitting or the complexity in the model archi-
ecture. To address the such concern, we also implemented a dropout
trategy to improve further the model performance where 10% of the
eurons are frozen after each hidden layer. However, the performance
id not improve as compared to the original multilayer models.

.5. Comparison of single and multilayer LSTM models

As we discussed in the previous sections, single and multilayer LSTM
odels were implemented to predict the closing price. In this section,
10
we analyze the performance of these two LSTM architectures by using
the comparative boxplots of performance metrices obtained from 30
replicates. Figs. 9 and 10 provide boxplots of the average performance
scores obtained from the single and multilayer models respectively.
As we see in the boxplots, evaluation metrics generally follow similar
patterns in both single and multilayer LSTM models. The median scores
of RMSE and MAPE are increasing but that of metric R is decreasing
consistently until the number of neurons reaches to 30 in single layer
and (20, 10) in multilayer models. Then, the median scores of RMSE
and MAPE are decreasing but that of metric R is increasing consistently
until the number of neurons reaches to 150 in single layer and (150,
100) in multilayer models. Afterwards, we noticed the significant jump
in the RMSE and MAPE scores in both single layer and multilayer
models and the large drop in R scores. In this case, complex models
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Table 9
The performance scores of the multilayer LSTM models in the test data.

Metrics Neurons → (10, 5) (20,10) (50,20) (100, 50) (150, 100) (100, 50, 20)

RMSE

Min 47.8386 58.8881 49.1501 47.6658 46.4954 167.5684
Average 61.8187 86.9894 67.1374 53.9076 49.8362 197.2483
Max 83.6141 114.2188 92.3948 59.1283 52.6221 228.9790
Std 9.9735 14.7349 8.4727 2.8917 1.8095 13.9473

MAPE

Min 0.9549 1.2690 1.006 0.9668 0.9108 4.4809
Average 1.2740 1.9661 1.4671 1.1430 1.0269 5.4067
Max 1.9123 2.7574 1.9676 1.2971 1.1351 6.3168
Std 0.2016 0.3929 0.1948 0.0822 0.0580 0.4039

R

Min 0.9935 0.9838 0.9925 0.9957 0.9959 0.9339
Average 0.9956 0.9913 0.9949 0.9962 0.9964 0.9542
Max 0.9967 0.9960 0.9966 0.9966 0.9967 0.9669
Std 0.0008 0.0026 0.0009 0.0002 0.0001 0.0083

No. of parameters 1206 3811 18,101 75,051 197,701 80,701
Fig. 9. Box plots of the performance scores obtained from single layer LSTM models with 30 replications.
provide even worse results in the out-of-sample data as compared to
the corresponding simple versions. This shows that a single layer LSTM
model with around 150 neurons and a multilayer LSTM model with
around (150, 100) neurons can be considered as the best models in
their respective categories.

More interestingly, the median scores of all evaluation metrics in the
single layer LSTM models are better than that of the multilayer models.
For instance, median score of RMSE obtained from the single layer
models consistently fall within the range of 40–55 except for the last
model which has median score above 70. On the other hand, almost all
of these values obtained from the multilayer models are well above 50,
suggesting inferior performance compared to the single layer models.
In Fig. 11, we observe that the worst value among the 30 replicates
of best single layer model is much smaller than the best RMSE scores
among 30 replicates of the best multilayer model. In terms of RMSE
metric, the single layer LSTM model is superior than multilayer LSTM
model. Similar conclusions can be drawn from the boxplots of MAPE
and R scores, and in each case, the single layer models outperform
the multilayer competitors. In nutshell, a single layer LSTM model
architecture having 150 neurons is more reliable to predict the closing
price with high accuracy because it outperforms all other models.

5.6. Statistical analysis

The RMSE, MAPE, R, and the visualization through boxplots dis-
cussed above indicate that the performance of the LSTM model with a
single hidden layer performs better than the LSTM model with multiple
hidden layers. We further like to validate the fact using a statistical
test. In other words, we would like to test statistically whether the
average RMSE from the best single-layer LSTM model with 150 neurons
is significantly better than the average RMSE of the best multilayer
LSTM with (150,100) neurons. Since the RMSEs are independent and
quantile quantile (QQ) plots in Fig. 12 show that they are normally

distributed, we use Welch’s two-sample t-test to test the hypothesis that

11
two populations have equal means. The test statistic and the 𝑝-value of
the Welch t-test are −22.2387, and 7.0847e−29 respectively. We reject
the null hypothesis since the 𝑝-value of the test is almost zero. Hence,
based on the Welch t-test, there is sufficient evidence to claim that
the performance of the LSTM model with a single hidden layer with
150 neurons performs significantly better than the LSTM model with
multiple hidden layers with (150, 100) neurons.

6. Ethics and implications

In this study, we have used publicly available data, and it is not
modified except as explained in the paper. The results can be used as
additional information to make an investing decision. However, the in-
vestment decision should not be solely based on this research. Investors
are encouraged to perform their due diligence and consider their risk
tolerance in various market conditions. The rational forecast depends
not only on the outcome of the specific model but also on the volatile
nature of the stock market, especially during geopolitical tension, the
global supply chain disturbance, war, pandemic, and various other
situations. If the market’s current behavior is appropriately analyzed
and amalgamated with the model’s outcome, there is a good possibility
of making profit.

The ability to precisely predict the stock price and consequently
project the estimated return is the ‘‘dream’’ of equity traders, individual
investors, and portfolio managers. This research shows the promising
possibility of the LSTM neural network to delineate the cone of un-
certainty in stock price prediction. As a result, stakeholders can use
the results as additional information to make investment decisions.
Moreover, academic researchers can use the model to enhance their
knowledge in sequential data modeling.

7. Conclusion and future work

Stock price prediction is the area of high interest for equity traders,

individual investors, and portfolio managers. However, precise and
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Fig. 10. Box plots of the performance scores obtained from multilayer LSTM models with 30 replications.
Fig. 11. Box plots of the RMSE scores of the best model obtained from single layer
and multilayer LSTM models with 30 replications.

Table A.10
Hyperparameter tuning for 30 neurons single layer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 46.51 39.82 37.13
0.01 33.37 31.89 31.84
0.001 31.27 30.50 29.72

Adagrad
0.1 29.09 28.33 27.87
0.01 27.40 27.22 27.93
0.001 31.16 35.04 39.94

Nadam
0.1 42.76 45.09 47.70
0.01 46.50 46.15 46.70
0.001 45.84 45.05 44.33

consistent stock price prediction is a difficult task due to its noisy
and nonlinear behavior. There are several factors that can impact
the prediction such as fundamental market data, macroeconomic data,
technical indicators, and others. This study focuses on developing LSTM
based models to predict S&P 500 index’s closing price by extracting
a well-balanced combination of input variables capturing the multiple
aspects of the economy and broader markets. Both single and multilayer
LSTM architectures have been implemented and their performances
are analyzed by using various evaluation metrics to identify the best
model. The experimental results show that single layer LSTM model
with around 150 hidden neurons can provide a superior fit and high
prediction accuracy compared to multilayer LSTM. The proposed model
can be easily customized to apply in other broad market indexes where
the data exhibits a similar behavior. Interested stakeholders can use the
proposed model to better inform the market situation before making
their investment decisions.
12
In the near future, we plan to explore the possibility of incorporat-
ing unstructured textual information in the model such as investor’s
sentiment from social media, earning reports of underlying companies,
the immediate policy-related news, and research reports from market
analysts. Another potential direction of the future work can be develop-
ing hybrid predictive models by combining the LSTM with some other
neural networks architectures. To improve the prediction accuracy even
further, we also plan to implement hybrid optimization algorithms to
train the model parameters by combining the existing local optimizers
with the global optimizers such as genetic algorithms and particle
swarm optimization algorithm.
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Appendix A. Single layer hyperparameter tuning results

See Tables A.10–A.14.

Appendix B. Multilayer hyperparameter tuning results

See Tables B.15–B.18.
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Fig. 12. QQ Plot of RMSE scores: (a) Single layer LSTM with 150 neurons, (b) Multilayer LSTM with (150–100) neurons.
Table A.11
Hyperparameter tuning for 50 neurons single layer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 60.94 53.30 50.36
0.01 43.21 40.76 38.42
0.001 36.80 35.05 33.62

Adagrad
0.1 32.45 31.25 30.25
0.01 29.43 29.00 29.40
0.001 31.41 34.22 38.32

Nadam
0.1 43.80 45.06 46.70
0.01 45.71 45.76 46.19
0.001 45.28 44.53 43.90

Table A.12
Hyperparameter tuning for 100 neurons single layer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 65.68 64.53 60.38
0.01 51.63 46.56 43.74
0.001 41.01 38.84 36.85

Adagrad
0.1 34.78 33.04 31.76
0.01 30.58 29.74 29.41
0.001 30.93 35.56 35.27

Nadam
0.1 45.96 52.70 58.31
0.01 56.95 56.49 56.51
0.001 55.22 54.04 52.91

Table A.13
Hyperparameter tuning for 150 neurons single layer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 82.81 147.61 141.31
0.01 112.13 94.86 84.71
0.001 76.45 69.70 64.34

Adagrad
0.1 59.48 55.55 52.28
0.01 49.47 47.16 45.81
0.001 45.88 46.57 48.13

Nadam
0.1 57.52 64.49 74.04
0.01 71.79 70.53 70.04
0.001 68.09 66.43 65.09
13
Table A.14
Hyperparameter tuning for 200 neurons single layer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 158.66 191.35 161.94
0.01 128.91 107.99 95.54
0.001 85.87 78.07 71.74

Adagrad
0.1 66.18 61.75 57.91
0.01 54.67 51.95 50.14
0.001 50.10 50.39 51.43

Nadam
0.1 85.14 104.74 138.73
0.01 133.28 129.17 126.27
0.001 122.25 118.68 115.29

Table B.15
Hyperparameter tuning for [20, 10] neurons multilayer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 86.14 66.04 56.05
0.01 48.81 44.02 41.41
0.001 38.51 36.22 34.91

Adagrad
0.1 33.78 33.21 32.67
0.01 32.13 31.82 32.13
0.001 33.63 35.39 38.42

Nadam
0.1 42.63 46.54 49.46
0.01 48.24 48.11 48.67
0.001 47.58 46.75 45.90

Table B.16
Hyperparameter tuning for [50, 20] neurons multilayer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 136.80 146.34 118.73
0.01 95.15 80.53 54.52
0.001 64.71 59.04 54.52

Adagrad
0.1 50.93 48.29 45.94
0.01 43.96 42.30 41.17
0.001 41.27 41.69 42.36

Nadam
0.1 48.94 54.38 59.66
0.01 57.79 57.19 57.62
0.001 56.05 54.75 53.66
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Table B.17
Hyperparameter tuning for [100, 50] neurons multilayer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 249.48 256.85 226.71
0.01 176.80 147.48 129.50
0.001 115.52 104.98 96.19

Adagrad
0.1 88.44 82.26 77.33
0.01 72.86 69.10 66.14
0.001 65.61 65.45 65.76

Nadam
0.1 77.25 87.64 96.58
0.01 93.48 92.12 91.78
0.001 89.24 87.14 85.05

Table B.18
Hyperparameter tuning for [150, 100] neurons multilayer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 334.19 316.71 306.57
0.01 237.61 197.21 169.94
0.001 149.58 134.34 122.28

Adagrad
0.1 111.92 103.56 96.50
0.01 90.48 85.47 81.45
0.001 79.80 78.83 78.45

Nadam
0.1 95.79 121.36 138.42
0.01 134.05 130.94 128.93
0.001 124.97 121.47 118.28

Table B.19
Hyperparameter tuning for [100, 50, 20] neurons multilayer LSTM.

Optimizer Learning rate Batch size

4 8 16

Adam
0.1 255.23 249.43 234.60
0.01 184.22 156.23 137.46
0.001 122.72 11.26 101.80

Adagrad
0.1 93.83 87.23 81.96
0.01 77.19 73.29 70.67
0.001 70.67 71.39 73.01

Nadam
0.1 82.97 91.19 98.93
0.01 95.85 95.08 94.81
0.001 92.14 90.09 88.09
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