
A Tool for Fake News Detection

Bashar Al Asaad
West University of Timişoara

Timişoara, Romania

bashar.alas3ad@hotmail.com

Mădălina Eraşcu
West University of Timisoara
Institute e-Austria Timişoara

Timişoara, Romania

madalina.erascu@e-uvt.ro

Abstract—The word post-truth was considered by Oxford
Dictionaries Word of the Year 2016. The word is an adjective
relating to or denoting circumstances in which objective facts are
less influential in shaping public opinion than appeals to emotion
and personal belief. This leads to misinformation and problems
in society. Hence, it is important to make effort to detect these
facts and prevent them from spreading.

In this paper we propose machine learning techniques, in
particular supervised learning, for fake news detection. More
precisely, we used a dataset of fake and real news to train
a machine learning model using Scikit-learn library in
Python. We extracted features from the dataset using text
representation models like Bag-of-Words, Term Frequency-Inverse
Document Frequency (TF-IDF) and Bi-gram frequency. We tested
two classification approaches, namely probabilistic classification
and linear classification on the title and the content, checking if
it is clickbait/nonclickbait, respectively fake/real.

The outcome of our experiments was that the linear classi-
fication works the best with the TF-IDF model in the process
of content classification. The Bi-gram frequency model gave the
lowest accuracy for title classification in comparison with Bag-
of-Words and TF-IDF.

Index Terms—fake news, Bag-of-Words, TF-IDF, Bi-gram,
clickbait

I. INTRODUCTION

Today, in the age of technology, and while we spend most

of our time online, we receive hundreds of information from

random sources. We are digital citizens so we have the duty

of fighting fake news spreading and controlling our life.

In January 2018, the European Commission established a

high-level group of experts to advise on policy initiatives to

fight fake news and disinformation spread online. The outcome

of this group was a report (March 2018) designed “to review

best practices in the light of fundamental principles, and

suitable responses stemming from such principles”. Among the

recommendations of the group was to “invest in research and

innovation actions to improve technologies for online media

services”.

In this paper, we present our preliminary experiments on

applying machine learning techniques for fake news detection.

In particular, we studied and developed methods and tools

for detecting fake news, also, proposing a methodology for

that purpose and implementing an algorithm which allows

reporting, respectively detecting fake news articles.

This work was supported by a grant of the Romanian National Authority
for Scientific Research and Innovation, CNCS/CCCDI - UEFISCDI, project
number PN-III-P2-2.1-PED-2016-0550, within PNCDI III.

We used the machine learning library Scikit-learn
(http://scikit-learn.org) in Python since it has built-in methods

that implement different classification approaches. We have

used probabilistic (Naive Bayes) and linear (Support Vector
Machine). As text representation models, we used Bag-of-
Words, Term Frequency-Inverse Document Frequency (TF-
IDF) and Bi-gram frequency. By combining these approaches,

we built a fake news detection tool. It has a minimal user

interface allowing the user to enter a link to any news article he

would like to verify. The entered link is parsed and analyzed.

The analysis is made based on article title, date of publication,

author name and content.

The experimental results with the tool developed are promis-

ing giving an accuracy score greater than 0.8 for content and

title classification. The linear classification model works the

best with the TF-IDF model in the process of content classifi-

cation (0.94). The lowest accuracy score was obtained by the

probabilistic classifier combined with TF-IDF. Both linear and

probabilistic classification gave the same accuracy score (0.95)

for title classification, while the Bi-gram frequency model gave

the lowest accuracy for title classification in comparison with

Bag-of-Words and TF-IDF.

We recommend the users of our tool not to take the results

of a fake news detection as a ground truth but to use also the

filter of their critical thinking in order to decide the nature of

the article.

II. RELATED WORK

The term fake news emerged during the last two years.

However, fake news and misleading information were present

in all time periods. Most of works which discuss the detection

of fake news and biased information are relevantly modern.

Some of them are based on studying the credibility of a

news source regardless of the news content. This process is

not a good way because a news source could be classified

as untrusted and at the same time it could publish a true

fact. An example in this sense is http://www.fakenewsai.com.

The authors of this website have used artificial intelligence

algorithms (neural networks) to detect if a given website is

a credible news source or not. Another project that discusses

fake news problem based on news sources and not on the

article content is http://bsdetector.tech. This website offers

an extension to be installed on Internet browsers and which

verifies any website the user will access. Then it gives a noti-

fication if the website is classified as unreliable. The websites

379

2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)

978-1-7281-0625-0/18/$31.00 ©2018 IEEE
DOI 10.1109/SYNASC.2018.00064

classification was made based on http://www.opensources.co

which contains a list of online sources classified using tags

like fake, satire, conspiracy, rumor, junk science, hate, click-

bait, unreliable, political, reliable. The list was drawn up by

analyzing a group of news websites and organizing them under

tags (categories). The category of every website was specified

by getting background information about the owners of the

website, its repetition and its recent behaviour. Unlike these

approaches, we will use the content of an article to decide if

it is fake or real.

An approach for detecting fake news based on article

content is [1], where the authors present an algorithm that

uses data mining to detect fake news. The idea is that the

verification of a news article depends on many factors, like:

1) the publisher, 2) the content, 3) the time of posting on social

media websites, and 4) the number of engagements between

different users and the article. First, the algorithm extracts

the text features (the characteristics of the content and the

publisher). Then it will perform linguistic and visual studies

on the extracted features (source, headline, body text, image,

video). The linguistic study includes studying the lexical fea-

tures and the syntactic features; lexical features like different

writing systems and sensational headlines; syntactic features

such as sentences characteristics and words frequencies. The

visual study includes the images and videos specifications

analysis. The extracted information will be used to construct

a machine learning model to classify the articles as fake or

real. The constructed machine learning model will also use

external sources to learn from, for example readers feedback.

In contrast, in our tool, we used a static dataset where no

feedback will be used for training the model. We performed

studies only on the text features without taking the visual

features into consideration. We studied articles from news

websites, and not only social media websites.

Paper [2] discusses the detection of fake news based

on clickbait titles. The system studies the relation between

the article title and its body. To achieve this, they used a

dataset provided by http://www.fakenewschallenge.org. This

dataset has headlines and articles verified by the Fake News

Challenge Stage 1 (FNC-I) algorithms (https://github.com/

FakeNewsChallenge/fnc-1) and classified as unrelated or re-

lated. The algorithm verifies the similarity between a headline

and content using CoreNLP Lemmatizer (https://stanfordnlp.

github.io/CoreNLP/simple.html). The similarity score is calcu-

lated based on the n-gram technique, by studying the matches

between the headline and the content. They also used the

frequency of appearance and the inverse document frequency

of a term (https://nlp.stanford.edu/IR-book/html/htmledition/

inverse-document-frequency-1.html) to calculate the matching

score. When a word is mentioned in the headline and fre-

quently used in the body of the article, then the result will be

related. Different to this, we do not check if the title of an

article is related to its content.

A similar approach to detect the similarity between headline

and article content using the same dataset offered by the fake

news challenge website is [3]. The authors present a system

of classifiers consisting of two stacked1 layers. The first layer

consists from five independent classifiers (slave classifiers)

developed using Natural Language Processing (NLP) modules.

The second layer has one master classifier which will use the

output of the weak classifiers (slave predictions) as an input.

The master classifier will use the predictions of slave classifiers

to give a final prediction as an output. Classification techniques

used are multi-layer perceptron and ReLU activation function.

It is clear that NLP techniques are the most used methods

in fake news detection. These methods help the machine to

identify the fake sources and articles. In the project https:

//github.com/aldengolab/fake-news-detection, the authors pre-

sented a NLP-based application which helps detecting mis-

leading sources and headlines; this project applies the NLP

algorithms on the input text to make a decision. They present

a comparison between the efficacy of models using three

different sets of features. The first features set was about

applying TF-IDF using Bi-gram frequency; the second features

set was studying the syntactical structure normalized frequency

(PCFGs); the third one was a union between the first two

features sets. They used the classification models from the

machine learning library Scikit-learn to implement the

algorithm. Differently to this work, we also performed title

verification using cosine similarity and parsing algorithm, also

detecting if the title is clickbait/nonclickbait.

Other strategy to detect fake news and alternative facts

like is crowdsourcing2. In [4], based on social argumentations

online, the authors present a prototype system to verify the

credibility of a news article. They developed a graph-theoretic

framework by using substantial discussion basics. This ar-

gumentation graph is filled with information from different

Internet users (especially social networks users) through a

web-based application.

Another strategy for fake news detection is presented in [5].

The authors show that satirical news could be used as a guide

in distinguishing between fake and real news. They present an

automated tool which can indicate deceptive information fast

and efficiently by analyzing the satire news text characteristics

using Support Vector Machines models and 10-fold cross

validation to train and evaluate a machine learning model. The

main difference to our approach is that they focus on detecting

satire articles.

III. PRELIMINARIES

Machine learning (ML) intends to solve the problem of

constructing computer programs that improve by experience.

Applications of ML include virtual personal assistants (Siri,

Alexa, Google Now), traffic predictions, online fraud detec-

tion, email spam and malware filtering.

There are several types of ML algorithms, depending on

how they answer to the questions: 1) How does the computer

1Stacking in machine learning is an approach to combine classifiers.
2Crowdsourcing is a specific sourcing model in which individuals or

organizations use contributions from Internet users to obtain needed services
or ideas.

380

know whether it is improving or not?, or 2) How does it know
how to improve?, namely:

• Supervised learning: a training set of examples with the

correct responses (targets, class variables or labels) is

provided and, based on this training set, the algorithm

tries to respond correctly to all possible inputs.

• Unsupervised learning: correct responses are not pro-

vided, but instead the algorithm tries to identify simi-

larities between the inputs, so inputs that have something

in common are categorised together.

• Reinforcement learning: the algorithm is told when the

answer is wrong, but it is not told how to correct it.

• Evolutionary learning: biological evolution is seen as

a learning process so organisms adapt to improve their

survival rates and chance of having offspring in their

environment.

For our problem we have used supervised learning. In su-
pervised learning, we have a set of data called the training
data that consists of a set of input data that has target

data (labels), which is the answer that the algorithm should

produce, attached. The machine learning process consists of

the following steps:

1) Data collection and preparation, which includes search-

ing for training data, cleaning it and prepare it to the

process of features extracting. This step is important to

get good results.

2) Feature selection, which consists of identifying the fea-

tures that are most useful for the problem under exami-

nation.

3) Algorithm choice, given the dataset, after selecting the

features, we should choose the suitable algorithm to

extract these features from the dataset (classification).

4) Parameter and model selection, which means choosing

the machine learning model and setting its parameters

to guarantee the best performance with the extracted

features.

5) Given the dataset, algorithm, and parameters, training
uses computational resources in order to build a model

of the data in order to predict the outputs on new data.

6) Before the model is used, it needs to be tested and

evaluated for accuracy on data that it was not trained

on.

A. Classifiers

When we want to solve a problem using machine learning

we have more than one approach to find the solution. The

used approach differs based on the problem type. When the

proposed problem is about determining to which label a given

observation belongs to, then we can use classification methods
to find the solution.

Classification methods are based on classifying the obser-

vations in different categories depending on different factors.

A dataset with a number of observations is provided for the

classifier to help it finding the category of a new given observa-

tion. The classifier uses the dataset to train and create patterns

to recognize every observation to which category it suits.

This method belongs to the supervised learning approach. Any

algorithm that performs the classification method and classifies

a given feature into a category is called a classifier.

In the following, we present classification approaches useful

for text classification problems.

a) Naive Bayes Classifier: Naive Bayes classifiers are

probabilistic classifiers3 which apply Bayes theorem in their

decision rule assuming strong independence between features.

Naive Bayes classifiers are useful for text classification prob-

lems, because they can be trained precisely in the supervised

learning case.

Given a class variable (label) y and a vector of features

x = (x1, x2, ..., xn), where n is the number of features, the

probability of y depending on the vector of features x can be

calculated using the formula:

P (y|x1, ..., xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, ..., xn)

Since the value of P (x1, ..., xn) is the same for all class

variables (labels), we can say that the result of a prediction

probability r is the maximum probability of the calculated

probabilities for all class variables:

r = max(P (y)
n∏

i=1

P (xi|y))

b) Linear Support Vector Machines Classifier.: Linear

classifiers perform classification by using the value of a linear

combination between the features of a given observation. In

general, linear classification works good for problems with

large number of features. Given x the features vector obtained

from the input data and w the feature vector obtained from a

labelled dataset train data, the output score y will be:

y = f(�w�x) = f(
∑

j

wjxj),

where f is a function that uses the value
∑

j wjxj to obtain

the final output score.

In binary classification problems where the classifier has

to classify the given observations in two groups (e.g. true

or false), the linear classification approach can be seen as a

process of splitting a high-dimensional space into two parts by

a hyperplane (decision boundary). Every part represents a class

variable (label). When classifying an observation, the result of

f will map the observation to one of the two categories, based

on the value obtained from
∑

j wjxj .

One of the classifiers that uses the linear approach is linear
support vector machine. It represents the given dataset as

points in linear space, separated in categories. For example,

assume we have an animal and we want to know if it is a

giraffe or an elephant. We are given the features length of
neck and head size, and a dataset of giraffes and elephants

3Probabilistic classifier is a classifier that can predict the category of a
given observation, based on the observation’s probability distribution over the
set of categories.

381

Fig. 1. Two Dimensional Linear Representation

properties. The linear representation of this problem will look

like in Fig. 1. In this example we had a classification problem

with two features, hence the 2D representation as in Fig. 1.

Also, it is a binary classification, so we had a 1D single

decision boundary. The number of features will determine

the dimension of the representation space and the dimension

of the decision boundary. The class variables number will

determine how many decision boundary the representation

will have. Given length of neck and head size features of an

animal (giraffe or elephant), we will know if the animal is

a giraffe or an elephant by representing these feature in the

2D dimensional space we see in Fig. 1. If the given features

result a point above the boundary decision then the animal is a

giraffe, and if they result a point under the boundary decision

then the animal is an elephant. The boundary decision line

is specified based on the support vectors. Support vectors are

made to guarantee the maximum margin between data points

from every class. This means the boundary decision should

keep an equal distance from the closest data point of each

class. In our example, d1 represents the distance between

the boundary decision and the closest giraffe point and d2
represents the distance between the boundary decision and the

closest elephant point.

B. Feature Extraction Models for Text

This type of models are used in natural language processing

domain to obtain features from the input text data. The

extracted features are mainly used to train a machine learning

classifier. Their main purpose is to characterize the input text

and make it suitable to be processed by the machine learning

classifier.

The input text is represented as a matrix, so-called term-
document matrix. The number of rows represents the number

of all input documents (every document is represented in a

row). The number of columns represents the number of all

features extracted from all input text documents. The features

could be single words or n-grams. Hence, every document is

represented as a vector of specific identifiers (count of word

frequencies, weight of a word depending on its frequency in

a document, n-gram frequencies, etc.).

In the following, we present three text representation mod-

els: 1) Bag-of-Words 2) N-gram 3) Term Frequency-Inverse

Document Frequency

a) Bag-of-Words model: This model analyzes the text

from all input documents and converts it in a Bag-of-Words

form. For example, for more than one text (set of text

documents), we can have one bag of words which will

contain all distinct words from all texts in one bag (well-

structured container). It ignores the order of the words and

used grammars. It is also known as one-gram model, that is the

count of occurrences of a term (single word) in a document.

In this case, every element in the matrix will represent the

frequency count for a term (column) in a document (row).

b) N-gram model: In this class of models, it is possible to

use the either count of word frequencies or weight of a term in
a document to characterize the input text. The main difference

is the features form. We can consider Bag-of-Words model as

a special case of n-gram models (n = 1). When n = 1 means

that every feature will consist of a single word (token). When

n > 1 then the model will group n words into a single feature.

Then the frequency occurrences or the weight of this feature

will be calculated. In n-gram, the models keep the order of

the words from the original text. On the other hand, in Bag-

of-Words model the features indexes are stored in the matrix

randomly.

c) Term Frequency-Inverse Document Frequency model:
Term Frequency-Inverse Document Frequency (TF-IDF) uses

the frequency count of a term in a document in addition

to its frequency count in the whole set of documents for

the characterization of the input text. These frequencies are

used to calculate a value which represents the importance of

a term (word, n-gram) mentioned in a document. In other

words, it represents every term (feature) by its weight in a

document. This model is typically used because the normal

term frequency is not always a satisfiable way to characterize

text documents, especially when the set of documents has large

number of documents, since we have insignificant terms with

high frequency.

In this model, the weight of a term in a document is

calculated by finding the frequency of a term in a document

then finding the frequency of the same term in the whole set of

documents had as an input. This is because the frequency of a

term in a document is not enough to determine the importance

of a term for a document. For example, the common words

like “this” and “a” will have a high number of frequencies.

In the normal count frequency model, these words will be

considered features with high effect. But in this model it will

have ineffective weight because these words will have high

frequency count all over the set of documents and not only

in the studied document. This will result in a low weight for

these words in all documents, so the features corresponding to

frequent words will be considered not important in comparison

with the features corresponding to less often words.

C. Cosine Similarity Approach

Cosine Similarity is a method for measuring the similarity

between two vectors in the vector space. It represents the

cosine value of the angle between the two vectors. For

382

example, it is 0 if the vectors are orthogonal, and 1 if the

angle between the vectors is 0. The cosine similarity method

does not take into consideration the magnitude of the vectors,

it depends on their orientation to judge the similarity between

them.
Cosine similarity uses the dot product of the two vectors

and the product of their magnitude to calculate the similarity

score [6].

cos(θ) =
A·B

||A||·||B|| =
∑n

i=1Ai.Bi√∑n
i=1A

2
i·
√∑n

i=1B
2
i

The method can be used with any text representation model

presented previously. The smaller the value we obtain, the

more similar the titles are.

IV. PROBLEM STATEMENT

Lots of factors influence the process of verifying and

analyzing news articles, which makes it difficult to achieve

a 100% accuracy. So we organised the factors we will be

analyzing into: 1) source and the author, 2) title, 3) publication

date, 4) content.
These factors combined together form the article full con-

tent. We observed that it was not enough to detect the content

solely and ignoring the title, author and date. Every factor

has its role in determining the credibility of a news article.

For example, a news article can have a real content, but an

exaggerated title to attract users to click on it. This requires

title clickbait detection. Also, reposting old news as new one

is common, so the date of publication is important too.
The analysis can be performed with computer science tools.

At this aim, we implemented an algorithm (Algorithm 1) that

takes as an input a link to a news article and, as output, it

displays details about the entered article. These details are:

1) for source and the author: the news source type will be

verified if it is credible or not, then a classification tag will

be printed to the user; the author will be extracted and

showed to the user; in case the author is not mentioned,

the domain name of the website is considered the author.

2) for title: if the title is clickbait or nonclickbait.

3) for publication date: the most similar real news title that

happened in the respective date.

4) for content: if the content is real or fake.

V. OUR APPROACH

In this section we present algorithms for fake news de-

tection. They are based on parsing and machine learning

techniques. The main algorithm is Algorithm 1 which for every

input link to an article displays information about the content,

title, date and author by calling other subalgorithms. All these

subalgorithms are self-explanatory. We will briefly describe

the main ideas behind.
a) Parsing: Web page parsing is the process of extracting

information from a web page. Web parsing is based on the

HTML source code of the web page. Through parsing, we

were able to extract the required information for validation

from the given web page, like title, content, date of publication,

and author name (if exists).

Algorithm 1 Fake News Detector

input: Web link to a news article.

output: (1) Author: name/website. (2) Title: click-

bait/nonclickbait. (3) Date: the most similar news title in

the respective publication date. (4) Content: fake/real.

Step 1. Verify if the introduced link is trusted or not using

http://www.opensources.co lists.

Step 2. If the introduced link is classified as trusted then go

to Step 3. Else, print a classification tag (fake, bias, etc.).

Step 3. Parse the HTML source code of the introduced link

using Algorithm 2 and extract the following information

from the web page: 1) Author of the article. 2) Publication

date of the article. 3) Title of the article. 4) Content of the

article.

Step 4.
• Analyze the author using Algorithm 2; if the author

name is missing then consider the website which

published the article as an author.

• Analyze the title, respectively content, using Algorithm

3; verify if the extracted title is clickbait/nonclickbait,

respectively if the content is fake or real using machine

learning and print clickbait/nonclickbait or fake/real

accordingly.

• Analyze the date using Algorithm 4; use the extracted

publication date to check the news titles that actually

happened in the respective date.

Algorithm 2 Web Link Parsing

input: Web Link to a news article.

output: (1) The author of the article. (2) The publication

date of the article. (3) The title of the article. (4) The content

of the article.

Step 1. Open the web link and get the HTML source code.

Step 2. Extract the title of the article.

Step 3. Extract the content of the article.

Step 4. Extract the publication date of the article.

Step 5. Extract the author of the article. If exists, then print

the author. Else, print the website domain name.

b) Machine Learning: We used machine learning models

to verify the article content and title. Using machine learning,

we were able to: 1) check if the title is clickbait or not;

2) decide if the article content is fake or real.

In comparison with parsing, machine learning was used to

solve classification problems. On the other hand, parsing was

used for extracting data.

As it is mentioned in Section III, there are different types

of machine learning algorithms; here we used supervised

learning. Our algorithm takes a dataset as input; the output

of the algorithm will depend on the input dataset. If the

input is fake/real news dataset, then the output displays if

the article is fake/real. On the other hand, if the input is

clickbait/nonclickbait titles dataset, the output displays if the

title is clickbait/nonclickbait.

383

The machine learning process in our application consists of

following steps:

1) In the case of content detection, we used the fake and real

news dataset from https://github.com/GeorgeMcIntire/

fake real news dataset. In the case of title detection,

we used the dataset mentioned in the paper [7]. These

datasets are clean, labelled and ready to be used for

features extraction.

2) We checked if words (tokens) in the articles and titles

have a significant impact on whether the content was fake

or real, and the title is a clickbait or not.

3) We chose the following text representation models:

a) Bag-of-Words model; b) Term Frequency-Inverse Doc-

ument Frequency model; c) Term frequency Bi-gram

model.

4) We implemented these three text representation models

with two main classification approaches: linear and prob-

abilistic.

5) We evaluated the classifiers using test data from the

imported datasets. The test data were not used in the

classifiers training process.

c) Cosine Similarity: We used this approach to verify

the similarity between the news title we have and a list of

news titles. The list of news titles is extracted using the API

https://www.newsapi.org. The list of titles is based on the date

of publication we extracted from the news article web page. In

other words, we have a list of titles for all events that happened

at the same day the input article was published.

To perform the cosine similarity algorithm on the titles, we

represented our given title and all the titles in the list as TF-

IDF vectors. This means that every title we have has been

represented as a vector of weights values for each word (token)

in it. Now, we can perform the cosine similarity algorithm

between our input title and every other title in the list. The

highest similarity score will be recorded and its associated title

will be showed to the user.

Algorithm 3 Analyze Article Content/Title

input: The article content/title

output: fake/real or clickbait/nonclickbait

Step 1. Read the dataset with fake and real news or with

clickbait/nonclickbait titles and split it into train and test

sets.

Step 2. Build the text representation model (Bag-of-Words,

Term Frequency-Inverse Document Frequency, Bi-gram)

from the train and test data.

Step 3. Fit the train data to machine learning classifiers:

(1) Naive Bayes (Probabilistic classifier), (2) Linear
support vector machine (Linear classifier).

Step 4. Predict the label (fake/real) of the article content or

the label (clickbait/nonclickbait) of the article title using the

machine learning classifiers.

Step 5. Use the test data from Step 1 to calculate the

accuracy score for the machine learning classifiers.

Algorithm 4 Analyze Publication Date

input: The article publication date.

output: News title with highest score similarity.

Step 1. If the date respects the ISO 8601 date format

(yyyy-mm-dd or yyyy-mm-ddThh:mm:ss) then go to

Step 3. Else go to Step 2.

Step 2. Transform the extracted date to the ISO 8601 date

format.

Step 3. Get the list of news titles that happened in the

respective date by sending a web request to https://www.

newsapi.org.

Step 4. Build text representation model (Term Frequency-

Inverse Document Frequency) from the extracted title and

the list of received titles from newsapi.

Step 5. Use the Cosine Similarity approach to find the title

which is the most similar to the extracted title.

Step 6. Print the extracted title, the other similar title and

the similarity score.

VI. IMPLEMENTATION DETAILS

We implemented our application using Python (https://www.

python.org) since it supports a large number of efficient pack-

ages helping to deal with any type of data (images, text, audio,

etc.) and to achieve any target he wants (machine learning,

deep learning, web development, etc.). To implement our ap-

plication we used the following libraries: (1) Scikit-learn
(http://scikit-learn.org), (2) Pandas (https://pandas.pydata.

org), (3) Beautiful Soup 4 (https://www.crummy.com/

software/BeautifulSoup/bs4/doc/), (4) PyQT5 (https://www.

riverbankcomputing.com/software/pyqt/intro), (used for imple-

menting the application’s graphical user interface); and two

external APIs: (1) Google Cloud Natural Language Processing

API (https://cloud.google.com/natural-language/), (2) News

API (https://newsapi.org).

A. Parsing

In order to obtain the useful information from a given

web link, our algorithm uses the Beautiful Soup 4 library for

parsing the HTML source code and obtaining the title of the

article and the content.

For extracting the publication date we did not use the

Beautiful Soup 4 library, because there is no common HTML

tag to represent the publication date. Hence we transferred

the encoded HTML bytes obtained by the Beautiful Soup 4

object to string.Now, we can search for the date of publication

by searching for any text that matches a date format pattern.

We created a regular expression to extract all texts that match

any possible date format.

For extracting the author name, since there was no specific

and common HTML tag used to represent the author, we had

to search for the author name in the HTML source code after

we have converted it to string. To do that, we used the Google

Cloud Natural Language Processing API to extract the entities

of type Person from the whole HTML source.To get the author

384

BoW TF-IDF Bi-gram

MN 0.883 0.845 0.903
LSVC 0.883 0.941 0.868

TABLE I
CONTENT DETECTION ACCURACY SCORES

name, we had to search for the word Author in the source. The

Google API returned all persons names from the given text,

and this will be considered the author names. If the HTML

source has no mention of the Author then the website domain

name will be considered the author of the news article.

B. Machine Learning

1) Analyzing Content and Title: The verification of content

and title is similar the only difference being the used dataset.

We started by reading the dataset using the Pandas library.

Our datasets (for the content and title) are stored in two

separated files of type csv. We have two data sets:

• fake or real news.csv has a 6335 news articles, 3164
being fake, and 3171 being real. Every news article in

the dataset is labelled as fake or real.

• log 32k.csv has 32000 titles, 15999 being clickbait, and

16001 being non-clickbait. Every title in the dataset is

labelled as clickbait or nonclickbait.

After we have read the datasets, we used Scikit-learn
library for all the steps involved in the supervised learning

algorithm for fake news detection.

2) Analyzing Date of Publication: For this analysis we used

https://newsapi.org API and cosine similarity method from

Scikit-learn.

VII. EXPERIMENTAL RESULTS

In this section we discuss the obtained results by com-

bining each classifier with every text representation model.

To compute the prediction accuracy of a classifier, we used

the metrics class from Scikit-learn library. Then we

represented these results as a ROC Curve. The accuracy is

calculated based on the test data we had when we split the

dataset to train data and test data. The items labels in the test

data were removed and stored in another separate variable.

We pass the test data to the classifier to see what predictions

it results. Then we compare the classifier predictions with the

labels we have removed from the test data. The accuracy score

is the percentage of the true predictions.

We have the following abbreviations to represent the re-

sults of the classifiers in the tables of accuracy and ROC

curves: 1) Bag-of-Words: BoW 2) Bi-gram: bigram 3) Term

Frequency-Inverse Document Frequency: TF-IDF 4) Multino-

mial Naive Bayes: MN 5) Linear Support Vector Classifier:

LSVC

A. Content Detection Results

We used a dataset with 6335 news articles and performed

random split on this dataset into two parts: training data and

testing data. Training data consists of 66.6% of the data and

testing data consists of 33.3% of the data.

Fig. 2. ROC Curve Representation for Content Detection

BoW TF-IDF Bigram

MN 0.957 0.956 0.849
LSVC 0.947 0.956 0.845

TABLE II
TITLE DETECTION ACCURACY SCORES

From Table I, we observe that the LSVC classifier per-

formed well with the TF-IDF model; at the same time the

MN gave the worst result with TF-IDF. This is because the

MN usually requires integer feature counts to predict with

a higher accuracy. Also, the results show that representing

documents through weighted terms vectors (TF-IDF vectors)

is more efficient in the case of linear classification. This is

because the linear classifiers do not necessary require integer

feature counts.

Both classifiers gave the same accuracy score with the BoW

model. On the other hand, the MN classifier gave a better

score accuracy in case of Bi-gram model. This depends on

the Bi-gram term-document matrix, which has pairs of tokens

frequencies as features. This means that using the frequencies

of pairs to calculate the probabilities gives better results than

mapping these frequencies in a linear space; the reason is that

having a pair of tokens with a high frequency can indicate a

bigger probability for one of the labels than the other.

B. Title Detection Results

From Table II, we observe that the accuracy scores from

both classifiers with the models BoW and TF-IDF are the

highest. This is because the dataset we used has a large number

of titles, hence a large dataset means large number of features.

At the same time, titles are short documents which makes

it easier to indicate to which class variables they belong to.

This is because in short documents, as a title, there is a small

number of features. So the frequencies of a word will have

more impact on the classification process, in comparison with

large documents which have large number of features where

the prediction process will be less accurate. On the other

hand, accuracy scores obtained using Bi-gram model were

the lowest with both classifiers. This is because the Bi-gram

feature extraction strategy gives relatively low results in case

385

Fig. 3. ROC Curve representation for title detection

of short documents. This is because a large number of Bi-gram

frequencies will be 0 or 1, so it will be harder to the classifier

to create a clear classification pattern.

The dataset we used to detect if a title is Click-

bait/nonClickbait had 32000 news titles. We performed ran-

domly split on this dataset into two parts. Training data

consists of 66.6% of the data and testing data consists of 33.3%

of the data.

VIII. CONCLUSION AND FUTURE WORK

The problems of fake news and disinformation play an

important role on nowadays life. This is because the advanced

level of technology and communication methods we have

enabled information spreading among people without any ver-

ification. This is a reason why researchers started searching for

solutions to stop fake news and disinformation from spreading

easily. However, it is well known that controlling the flow of

information online is impossible.

In this paper, we performed an attempt to verify the news

articles credibility depending on their characteristics. At this

aim, we implemented an algorithm combining several classi-

fication methods with text models. It performed well, and the

accuracy results were relatively satisfying.

As future work, we plan to better study the combination

between the feature extraction methods and the classifiers as

we will be able to choose the text representation model that

performs best with the classifier. Moreover, to achieve a higher

accuracy, we will have to implement a more sophisticated

algorithm which may use data mining technologies with big

data, because creating a big dataset including more types

of news articles with more class variables (labels) will help

raising the accuracy score.

REFERENCES

[1] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection
on social media: A data mining perspective,” SIGKDD Explor. Newsl.,
vol. 19, pp. 22–36, Sept. 2017.

[2] P. Bourgonje, J. M. Schneider, and G. Rehm, “From clickbait to fake news
detection: An approach based on detecting the stance of headlines to arti-
cles,” in Proceedings of Natural Language Processing meets Journalism
(O. Popescu and C. Strapparava, eds.), Association for Computational
Linguistics, 2017.

[3] J. Thorne, M. Chen, G. Myrianthous, J. Pu, X. Wang, and A. Vlachos,
“Fake news stance detection using stacked ensemble of classifiers,”
in Proceedings of the 2017 Workshop: Natural Language Processing
meets Journalism, NLPmJ@EMNLP, Copenhagen, Denmark, September
7, 2017, pp. 80–83, 2017.

[4] R. J. Sethi, “Crowdsourcing the verification of fake news and alternative
facts,” in Proceedings of the 28th ACM Conference on Hypertext and
Social Media, HT ’17, (New York, NY, USA), pp. 315–316, ACM, 2017.

[5] V. Rubin, N. Conroy, Y. Chen, and S. Cornwell, “Fake news or truth?
using satirical cues to detect potentially misleading news,” in Proceedings
of the Second Workshop on Computational Approaches to Deception De-
tection, (San Diego, California), pp. 7–17, Association for Computational
Linguistics, June 2016.

[6] A. Singhal, “Modern information retrieval: a brief overview,” BULLETIN
OF THE IEEE COMPUTER SOCIETY TECHNICAL COMMITTEE ON
DATA ENGINEERING, vol. 24, p. 2001, 2001.

[7] A. Chakraborty, B. Paranjape, S. Kakarla, and N. Ganguly, “Stop
clickbait: Detecting and preventing clickbaits in online news media,”
in Advances in Social Networks Analysis and Mining (ASONAM), 2016
IEEE/ACM International Conference on, pp. 9–16, IEEE, 2016.

386

