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ABSTRACT Matrix inversion is a fundamental operation for solving linear equations for many computa-
tional applications, especially for various emerging big data applications. However, it is a challenging task
to invert large-scale matrices of extremely high order (several thousands or millions), which are common in
most Web-scale systems, such as social networks and recommendation systems. In this paper, we present an
lower upper decomposition-based block-recursive algorithm for large-scale matrix inversion. We present its
well-designed implementation with optimized data structure, reduction of space complexity, and effective
matrix multiplication on the Spark parallel computing platform. The experimental evaluation results show
that the proposed algorithm is efficient to invert large-scale matrices on a cluster composed of commodity
servers and is scalable for inverting even larger matrices. The proposed algorithm and implementation will
become a solid foundation for building a high-performance linear algebra library on Spark for big data
processing and applications.

INDEX TERMS Matrix inversion, LU decomposition, linear algebra, parallel algorithm, distributed
computing, Spark.

I. INTRODUCTION
Theoretically, a set of linear equations can be represented as
Ax = b, where A is an n×nmatrix, x and b are n×1 vectors.
This equation can be solved by computing the inverse of the
matrix A, denoted by A−1, to get x = A−1 × b. Therefore,
matrix inversion is an essential computation task in many
data scientific applications, such as signal processing, com-
plex network analysis and collaborative recommendation.
For general matrices, there exist some commonly avail-
able matrix inversion algorithms like Gaussian elimination,
Gauss-Jordan [1], Cholesky decomposition [2] and
LU Decomposition [3]. However, these algorithms are
computation-intensive that require a cubic number of oper-
ations. Therefore, they are not applicable to invert large-
scale matrices of dimension in the order of thousands or
millions, often required in emerging big data applications.
For example, in real-life social networks (like Facebook and
Twitter), e-commerce websites (like Amazon and Ebay) and
online-video service providers (like Youtube and Netflix),
various types of matrices, including following matrices,
transaction matrices and rating matrices, contain millions of
distinct users and items. Inversion of these large-scale matri-
ces is a fundamental operation for proximity measurement,

link prediction and personalized recommendation tasks. This
calls for the application of parallel computing techniques
in the inversion of large-scale matrices. Message Passing
Interface (MPI) is proved to be an effective programming
model to support parallel matrix inversion jobs [4]. In recent
years, a number of new distributed computing technologies
have emerged as platforms for data intensive computing
tasks. MapReduce [5] and Spark [6] are two most popular
ones owing to their outstanding scalability and fault-tolerance
capabilities. Xiang et al. [7] proposed and implemented a
scalable matrix inversion algorithm based on MapReduce.
As compared to MapReduce, Spark provides a novel data
abstraction called resilient distributed datasets (RDDs) based
on distributed memory for efficient data reuse, which
improves the performance of iterative computing jobs.
However, Spark only supports relatively coarse-grained trans-
formation on RDDs. It leads to challenges in the design and
implementation of complex matrix operation algorithms, and
thus calls for new ideas and solutions.

In this paper, we present a LU decomposition based algo-
rithm for large-scale matrix inversion and its implementa-
tion on Spark. We carry out a block-recursive approach to
break down the huge inversion computation on the original
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large-scale matrix into a set of small tasks, which can
be executed as a pipeline of Spark tasks on a cluster.
The Spark implementation of the proposed algorithm as
well as the MapReduce-based algorithm proposed in [7]
and an MPI-based program are evaluated on clusters
with different configurations. The comparison with the
MapReduce-based algorithm shows that our algorithm
achieves remarkable performance improvement, and that to
the MPI-based program demonstrates that the Spark imple-
mentation is more robust on heterogenous and unreliable
clusters. However, it is noted that this paper is not trying
to prove that Spark is fundamentally superior to MPI or
MapReduce. Our goal is to introduce: 1) a novel matrix
inversion algorithm along with its well-designed Spark
implementation, which will become a fundamental compu-
tational component to build a linear algebra library for big
data science, 2) the underlying mathematical principles for
high-performance matrix inversion like block-oriented data
structure for efficient accessing matrix elements and solving
L−1 and U−1 instead of L and U to reduce the computation
and space complexity, and 3) the experimental performance
evaluation and analysis of Spark-based, MapReduce-based
and MPI-based matrix inversion algorithms on local clusters
composed of commodity servers under different scenarios.
This paper is an elaborated and extended version of a con-
ference paper presented at IEEE INFOCOM 2016 workshop
of Big Data Sciences, Technologies and Applications [8].
The key additions of this version include: (1) we propose
and illustrate the theories and pseudo-codes of optimized
algorithms in Section II, (2) we detail the key points of
implementation on Spark in Section III, (3) we perform
an additional experiment on an extra large-scale matrix
sized 102400 and present the execution times on two clusters
in Section IV, and (4) we extend the survey of related works
including the researches of using Graphics Processing Unit
to accelerate the matrix computation in Section V.

The rest of this paper is structured as follows. In Section II,
we present the basic and the optimized LU decomposition
based block-recursive matrix inversion algorithm. Section III
introduces the key points of its implementation on Spark.
We demonstrate the performance and the scalability of the
proposed algorithm, substantiated with experimental evalua-
tion results, in Section IV. The related work is discussed in
Section V. In Section VI, we conclude and point out future
works.

II. RELATED WORK
Owing to its fundamental role in scientific computing, matrix
inversion is widely supported in several numerical analysis
softwares like Matlab, R, LINPACK [9] and LAPACK [10].
Although these softwares provide basic matrix inversion
capabilities for solving linear equations, they have perfor-
mance issue when the order of the matrix to be inverted
becomes huge. Therefore, developing parallel algorithms for
inverting large-scale matrix is always an important issue in
data science research community.

Lau et al. [11] proposed two algorithms based on Gaussian
elimination to invert sparse, symmetric and positive defi-
nite matrices on parallel computers, and implemented these
two algorithms on SIMD and MIMD computers. However,
these algorithms do not work for general matrices.
ScaLAPACK [4] extended LAPACK to perform large-
scale dense matrix computation on supercomputers. It
achieved the goal of scalability to keep the com-
puting task efficient when the number of processors
increases, but it does not provision fault-tolerance capability.
Bientinesi et al. [12] proposed an algorithm to invert a
symmetric positive definite matrix based on Cholesky factor-
ization. Although the experimental evaluation results showed
that the proposed algorithm outperforms ScaLAPACK by
improving load-balance on a distributed memory environ-
ment, this algorithm cannot be used to invert general matrices.
Agullo et al. [13] proposed an efficient and scalable tile
algorithm to invert a symmetric positive definite matrix. They
used a dynamic scheduler to orchestrate the tasks in the
process of inverting a matrix for fine granularity parallelism
and asynchronous scheduling, but it does not work for general
matrices. Dongarra et al. [14] designed a LU factoriza-
tion based algorithm for inverting general square matrices
on multicore computer architecture. The implementation
shows good performance, but it is not suitable for clusters.
Yang et al. [15] proposed a parallel algorithm for matrix
inversion based on Gauss-Jordan elimination with pivoting.
However, the implementation relies on some specific DSP
hardware, which limits its applications.

In recent years, Graphics Processing Unit (GPU) has been
proved having potentials to perform computationally inten-
sive tasks. Ezzatti et al. [16] proposed to accelerate the
computation of matrix inversion by connecting a GPU to
general-purpose multi-core processors and implemented a
matrix inversion algorithm based on Gauss-Jordan elimina-
tion on a hybrid architecture consisting of one (or more)
multi-core general processors connected to several GPUs.
The evaluation results showed that the proposed architecture
can achieve remarkable high performance. Sharma et al. [17]
modified the Gauss-Jordan algorithm for matrix inversion by
leveraging the large scale parallelization capability of a mas-
sively multithreaded GPU. The algorithm was implemented
on a Computer Unified Device Architecture (CUDA) plat-
form. Although the above works have demonstrated that GPU
can considerably reduce the computational time of matrix
inversion, they are non-scalable centralizedmethods and need
special hardwares.

To break the resource limitation of single server,
Caron and Utard [18] designed a LU factorization based
parallel out-of-core algorithm to invert huge matrices and
implemented the algorithm based on the ScaLAPACK library
in cluster environment. However, owing to the heavy commu-
nications and I/O overheads, the algorithm is slow to invert
huge matrices. For example, it needs 3 days to invert a matrix
of order 10,000 on a cluster of 16 servers. As cloud computing
technologies emerges, several new data processing platforms
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have been developed for large-scale data processing. MapRe-
duce and Spark are two outstanding technologies, which
have been proved to be efficient for big data processing
on clusters composed of commodity servers with scalability
and fault-tolerance [19]. Building linear algebra functionality
on these platforms becomes a problem of great interest.
HAMA [20] and linalg [21] are such kind of efficient matrix
computation software packages based on MapReduce and
Spark, respectively. However, they do not provide matrix
inversion function. The work of [7] was the first MapReduce-
based matrix inversion algorithm, but the inefficient hard disk
based intermediated data mechanism limits its performance.

III. ALGORITHM DESIGN AND OPTIMIZATION
A. MATRIX INVERSION BASED ON LU DECOMPOSITION
The inverse of a square matrix A = [aij]16i,j6n is denoted as
A−1 such that AA−1 = In, where In is the identity matrix of
dimension n × n. The LU decomposition method computes
the inverse of a matrix A by factorizing the original matrix
into two matrices L = [lij]16i,j6n and U = [uij]16i,j6n
such that A = LU , where L is a lower triangular matrix
(i.e., lij = 0 for 1 6 i < j 6 n) and U is an upper
triangular matrix (i.e., uij = 0 for 1 6 j < i 6 n). From this
decomposition, the equation AA−1 = In can be transformed
to LUA−1 = In, and the inverse matrix A−1 can be simply
computed by A−1 = U−1L−1.

In some cases, the LU factorization of the original matrix
may fail to materialize. In order to make the factorization
numerically stable, the LU decomposition is always com-
puted using partial pivoting in practice, which decomposes
the row permuted matrix PA instead of the original matrix A.
P is a square binary matrix that has exactly one entry of 1
in each row and each column, and 0s elsewhere. Then, we
can solve the inverse matrix A−1 by computing U−1L−1P.
Algorithm 1 shows the pseudo-code of the in-place LU
decomposition by the partial pivoting method, which is only
workable for a small matrix that can be loaded into the
memory of a single server. Return values are matrix A and
matrix P. The upper triangular portion of A resembles U
whereas the lower one resembles L.

B. BASIC BLOCK-RECURSIVE MATRIX
INVERSION ALGORITHM
We develop a block-recursive algorithm based on LU decom-
position to compute the inverse of a large-scale matrix that
cannot be loaded into the memory of a single server. To illus-
trate the basic idea of the proposed algorithm, we take a
matrix with 16 blocks, which is shown as the first matrix
composed by B11−B44 in Figure 1, as an example to show the
overall process. Each block is a square matrix of dimension
b × b. The order of the block, b, is around 103 or less, and
thus the block is small enough to fit in the memory of a
computing server and be decomposed efficiently. Matrix M
denotes the input matrix of the algorithm, and M (i) denotes
the input matrix of the i-th step. The steps to invert the sample
matrix are as follows:

Algorithm 1 LU Decomposition on a Single Node
Input:

A = [aij]16i,j6n→ The input matrix
Output:

L→ L
U → U
P→ The pivot matrix

1: function LUDecompose(A)
2: n = rows(A)
3: for k = 1 to n do
4: (j, k) = argmax(|Ak,k |, |Ak+1,k |, ..., |An,k |)
5: add j to P
6: swap i-th row with j-th row
7: for i = k + 1 to n do
8: Ai,k = Ai,k/Ak,k
9: for j = k + 1 to n do
10: Ai,j = Ai,j − Ai,kAk,j
11: end for
12: end for
13: end for
14: return (A,P) /*(L,U ,P)*/
15: end function

FIGURE 1. Process of the proposed algorithm.

Step 1: Take the original matrix A as the input of com-
puting M (1). If the input matrix M (1) is not small enough,
e.g., cannot be decomposed on a single server very quickly,
M (1) is partitioned into 4 small sub-matrices. The first sub-
matrix, the matrix composed by B11,B12,B21, andB22 at the
top-left corner, is selected as the new input matrix M (2).
Step 2: The input matrixM (2) is examined again to check if

it is small enough. If not, M (2) is recursively partitioned into
4 small sub-matrices. The sub-matrix at the top-left corner is
selected as the new input matrix M (3).
Step 3:NowM (3) is small enough, i.e., only the sub-matrix

B11 is left in this example. It could be efficiently decomposed
on a single server. Unlike the traditional LU decomposition
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algorithm, we calculate the L−1, U−1 and P instead of L,
U and P for further processes. We will explain how this
approach can improve the performance in following sections.
Step 4: The results of L−1, U−1 and P calculated in the

function in the second round of recursion are returned to the
caller in the first round of recursion. They are used together
with the input matrixM (2) to solve the L−1,U−1 and P in the
first round of recursion.
Step 5: The results of L−1, U−1 and P calculated in the

first round of recursion are returned to the caller, and are used
together with the original input matrix M (1) to compute the
final L−1, U−1 and P.
For a single block, L−1,U−1 andP can be easily calculated

by Algorithm 1 on a single server. So, the key point of the
proposed algorithm to achieve high performance is how to
calculate L−1, U−1 and P when the input matrix is too big to
be computed on a single server. We introduce a block-based
approach to decompose the matricesM , L, U and P such that
PM = LU .Without loss of generality, we assume the order of
the square matrix M is 2kb, where k is a natural number and
b is the order of the block matrix that can be decomposed on
a single server. We will describe how to handle the matrices
that do not meet this criterion at the end of this section. Let the
matrices M , L, U and P be partitioned as blocks with equal
size:(

P1 O
O P2

)(
M1 M2
M3 M4

)
=

(
L1 O
L2 L3

)(
U1 U2
O U3

)
.

Performing the matrix multiplication in the above equation
results in(

P1M1 P1M2
P2M3 P2M4

)
=

(
L1U1 L1U2
L2U1 L2U2 + L3U3

)
.

This leads us to the following equations:

L1U1 = P1M1 (1)

L1U2 = P1M2 (2)

L2U1 = P2M3 (3)

L2U2 + L3U3 = P2M4. (4)

If M1 is small enough, i.e., it can be efficiently calculated
on a single server, we can decompose M1 to get L1, U1 and
P1 from Eq. (1) by Algorithm 1:

(L1,U1,P1) = LUDecompose(M1). (5)

We can get L−11 by inverting the small matrix L1. From
Eq. (2), we have

U2 = L−11 P1M2. (6)

If we define

L̃2U1 = M3, (7)

we can get

L̃2 = M3U
−1
1 , (8)

where U−11 is the inverse of small matrix U1. Considering
both Eqs. (3) and (8), we have

L2 = P2L̃2. (9)

Then, by substituting Eq. (9) into Eq. (4), we get

L3U3 = P2M4 − L2U2 = P2(M4 − L̃2U2).

Let M̃ = M4− L̃2U2. If M̃ is small enough, we can get L3,
U3 and P2 by decomposing M̃ :

(L3,U3,P2) = LUDecompose(M̃ ). (10)

After obtaining P2, we can get L2 by substituting P2 and
Eq. (8) into Eq. (9):

L2 = P2L̃2 = P2M3U
−1
1 . (11)

Thus far, we get all L1, L2, L3, U1, U2, U3, P1 and P2 from
Eqs. (5), (6), (10) and (11). So, we finally have:

L−1 =

(
L−11 O

−L−13 L2L
−1
1 L−13

)
(12)

U−1 =

(
U−11 −U−11 U2U

−1
3

O U−13

)
(13)

P =

(
P1 O

O P2

)
.

M1 and M̃ are assumed to be small enough to be decom-
posed on a single server according to Eqs. (5) and (10).
If any of them is too big to be solved on a single server, we can
keep recursively partitioning it into smaller sub-matrices until
the sub-matrix is small enough. Algorithm 2 illustrates the
basic block-recursive LU decomposition algorithm. Based
on Algorithm 2, we have the basic block-recursive matrix
inversion algorithm as described in Algorithm 3.

Note that we assume the order of the square matrixM and
n is 2kb, where k is a natural number. If n does not equal
to 2kb, we can perform the LU decomposition below.
We define the block with dimensions b×b as the basic block.
For each round of the recursion, the input matrix M is parti-
tioned into N ×N basic blocks, where N = dn/be. The order
of the blocks in the last row and column is n−b×(N−1). The
order of other blocks is b. IfN = 2k , where k is a natural num-
ber, the matrix M can be decomposed directly by using the
proposed algorithm. Otherwise, let k = dlog2Ne. In line 7 of
Algorithm 2, we can set the size ofM1 as 2k−1×2k−1 blocks.
Then, we get the size ofM2,M3 andM4 as 2k−1×(N−2k−1),
(N − 2k−1) × 2k−1 and (N − 2k−1) × (N − 2k−1) blocks,
respectively. Finally, the BlockLUDecompose() function can
be executed recursively on M1 and M̃ .

C. ALGORITHM OPTIMIZATION
Note that there are a number of matrix multiplications in
Algorithm 2. If we can eliminate some of these multiplica-
tions, we will save tremendous computation resources and
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Algorithm 2 Basic Block-Based LU Decomposition
Input:

M = [mij]16i,j6n→ The input matrix
Output:

L−1→ Inverse of L
U−1→ Inverse of U
P → The pivot matrix

1: function BlockLUDecompose(M )
2: if M is small enough then
3: (L,U ,P) = LUDecompose(M )
4: L−1 = Inverse(L)
5: U−1 = Inverse(U )
6: else
7:

(
M1 M2
M3 M4

)
= M

8: (L−11 ,U−11 ,P1) = BlockLUDecompose(M1)
9: U2 = L−11 (P1M2)
10: L̃2 = M3U

−1
1

11: M̃ = M4 − L̃2U2
12: (L−13 ,U−13 ,P2) = BlockLUDecompose(M̃ )
13: L2 = P2L̃2

14: L−1 =
(

L−11 O
−L−13 L2L

−1
1 L−13

)
15: U−1 =

(
U−11 −U−11 U2U

−1
3

O U−13

)
16: P =

(
P1 O
O P2

)
17: end if
18: return (L−1,U−1,P)
19: end function

Algorithm 3 Basic Block-Recursive Matrix Inversion
Input:

A = [aij]16i,j6n→ The input matrix
Output:

A−1→ Inverse Matrix of A
1: function BlockInverse(A)
2: (L−1,U−1,P) = BlockLUDecompose(A)
3: A−1=U−1L−1P
4: return (A−1)
5: end function

time. From Eqs. (2), (3), (12) and (13), we have:

L−1 =
(

L−11 O
−L−13 P2M3U

−1
1 L−11 L−13

)
U−1 =

(
U−11 −U−11 L−11 P1M2U

−1
3

O U−13

)
.

In the above equations, there is a duplicate multiplication
U−11 L−11 , which is performed in each round of recursion.
We introduce two newmatrices, T = U−11 L−11 and S̃ = M3T .
Thus, Algorithm 2 is optimized and results in Algorithm 4.
By comparing line 14 of Algorithm 2 with line 14 of
Algorithm 4, we can see that the multiplication of three

Algorithm 4 Optimized Block-Based LU Decomposition v1
Input:

M = [mij]16i,j6n→ The input matrix
Output:

L−1→ Inverse of L
U−1→ Inverse of U
P → The pivot matrix

1: function BlockLUDecompose(M )
2: if M is smal then
3: (L,U ,P) = LUDecompose(M )
4: L−1 = Inverse(L)
5: U−1 = Inverse(U )
6: else
7:

(
M1 M2
M3 M4

)
= M

8: (L−11 ,U−11 ,P1) = BlockLUDecompose(M1)

9: T = U−11 L−11
10: S̃ = M3T
11: M̃ = M4 − S̃(P1M2)
12: (L−13 ,U−13 ,P2) = BlockLUDecompose(M̃ )
13: S = P2S̃

14: L−1 =
(

L−11 O
−L−13 S L−13

)
15: U−1 =

(
U−11 −T (P1M2)U

−1
3

O U−13

)
16: P =

(
P1 O
O P2

)
17: end if
18: return (L−1,U−1,P)
19: end function

matrices L−13 L2L
−1
1 have been optimized and have become

the multiplication of two matrices −L−13 S.
The last step of Algorithm 3 takes a long time to compute

A−1 = U−1L−1P, in whichU−1, L−1 and P have equal sizes
with the large-scale input matrix A. From Algorithm 4, we
have

M−1 =
(
[M−1]1 [M−1]2
[M−1]3 [M−1]4

)
,

where:

[M−1]1 = U−11 L−11 P1
+U−11 L−11 P1M2U

−1
3 L−13 P2M3U

−1
1 L−11 P1

[M−1]2 = −U
−1
1 L−11 P1M2U

−1
3 L−13 P2

[M−1]3 = −U
−1
3 L−13 P2M3U

−1
1 L−11 P1

[M−1]4 = −U
−1
3 L−13 P2.

There are a number of duplicate matrix multiplications
in the four equations above, such as U−11 L−11 , U−13 L−13 and
P2M3. To eliminate these duplicate matrix multiplications,
we define the following new variables:

T = U−11 L−11
X1 = TP1
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Algorithm 5 Optimized Block-Based LU Decomposition v2
Input:

M = [mij]16i,j6n→ The input matrix
Output:

LUofM → intermediate matrix of LU
1: function BlockLUDecompose(M ) F actual L−1,U−1

2:

(
M1 M2
M3 M4

)
= M

3: if M1is small then
4: (L1,U1,P1) = LU (M1)
5: L−11 = Inverse(L1)
6: U−11 = Inverse(U1)
7: T = U−11 L−11
8: S̃ = M3T
9: M̃ = M4 − S̃(P1M2)
10: (L3,U3,P2) = LUDecompose(M̃ )
11: L−13 = Inverse(L3)
12: U−13 = Inverse(U3)
13: else
14: LUofM1 = BlockLUDecompose(M1)
15: (L−11 ,U−11 ,P1) = getLU (LUofM1)
16: T = U−11 L−11
17: S̃ = M3T
18: M̃ = M4 − S̃(P1M2)
19: LUof M̃ = BlockLUDecompose(M̃ )
20: (L−13 ,U−13 ,P2) = getLU (LUof M̃ )
21: end if
22: LUofM = (L−11 , S̃,L−13 ,U−11 ,T ,P1M2,U

−1
3 ,

P1,P2)
23: return LUofM
24: end function

X2 = U−13 L−13
Y1 = X1M2

Y2 = X2M3.

Then, we have:

[M−1]4 = X2
[M−1]3 = −Y2X1
[M−1]2 = −Y1X2
[M−1]1 = X1 − Y1[M−1]3.

Based on the above equations, Algorithm 4 can be opti-
mized and results in Algorithm 5. The pseudo-code of func-
tion getLU in Algorithm 5 is shown in Algorithm 6. Finally,
we have the optimized block-recursive matrix inversion
algorithm as described in Algorithm 7, which achieves high-
performance by avoiding the large-scale matrix multiplica-
tion A−1 = U−1L−1P.

IV. KEY POINTS OF IMPLEMENTATION ON SPARK
A. THE REASON FOR CHOOSING SPARK
The growing success of new distributed computing technolo-
gies like MapReduce [5] has made it possible to achieve

Algorithm 6 Compose LU
Input:

LUofM → intermediate matrix of LU
Output:

L−1→ Inverse of L
U−1→ Inverse of U
P → The pivot matrix

1: function getLU (LUofM )
2: (L−11 , S̃,L−13 ,U−11 ,T ,P1M2,U

−1
3 ,P1,P2) = LUofM

3: S = P2S̃

4: L−1 =
(

L−11 O
−L−13 S L−13

)
5: U−1 =

(
U−11 −T (P1M2)U

−1
3

O U−13

)
6: P =

(
P1 O
O P2

)
7: return (L−1,U−1,P)
8: end function

Algorithm 7 Optimized Block-Recursive Matrix Inversion
Input:

A = [aij]16i,j6n→ The input matrix
Output:

A−1→ Inverse of A
1: function BlockInverse(A)
2: if A is small then
3: return A−1

4: else
5:

(
A1 A2
A3 A4

)
= A

6: LUofA = BlockLUDecompose(A)
7: (L−11 , S̃,L−13 ,U−11 ,T ,P1A2,U

−1
3 ,P1,P2) = LUofA

8: X1 = TP1
9: X2 = U−13 L−13
10: Y1 = X1A2
11: Y2 = X2A3
12: [A−1]4 = X2
13: [A−1]3 = −Y2X1
14: [A−1]2 = −Y1X2
15: [A−1]1 = X1 − Y1[A−1]3

16: A−1 =
(
[A−1]1 [A−1]2
[A−1]3 [A−1]4

)
17: return A−1

18: end if
19: end function

large-scale matrix operations on clusters composed of com-
modity servers [7], [20]. However, the nature of MapReduce
makes it inefficient for iterative computations. To address
this issue, a number of alternative technologies have been
proposed. Spark [6] is such a parallel computing platform,
which supports efficient execution of iterative algorithms
on a distributed memory abstraction named Resilient Dis-
tributed Datasets (RDDs). Choosing Spark to implement the
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proposed algorithm has several advantages. First, our algo-
rithm benefits from the scalability and fault-tolerance
capabilities of Spark, which provides low-overhead fault-
tolerance to release the programmers from check-pointing
and rollbacks during the long process of data computing.
Second, the performance of our algorithm can be improved
by the persistence feature of RDDs by avoiding to repeatedly
save and load the intermediate data to and from hard-disks.
Finally, as compared to the simpleMap and Reduce program-
ming model in MapReduce, the rich and flexible APIs of
Spark provide us a relaxed space to control and optimize our
algorithm in a fine-grained manner.

B. DATA STRUCTURE DESIGN ON SPARK
In each round of the recursion, the Spark-based implementa-
tion of the proposed algorithm requires distributing the huge
input matrix and the intermediate matrices across servers in
the distributed computing environment. Therefore, the repre-
sentation of matrix data is a key point for effective implemen-
tation. In Spark, data are represented and managed as RDDs,
which are a distributed memory abstraction to perform in-
memory computations on clusters in a fault-tolerant manner.
A RDD is a collection of elements that are partitioned across
servers of a cluster. In this condition, we introduce two differ-
ent distributed matrix representations, IndexRowMatrix and
BlockMatirx to implement the proposed algorithm.
IndexRowMatrix is a row-oriented distributed matrix

with meaningful indices. It is a suitable matrix data
format for the input of our algorithm. For example,
A = [aij]16i,j6n can be stored as a RDD {a11, a12, . . . ,
a1n, a21, a22, . . . , a2n, . . . , an1, an2, . . . , ann} in row-major
order. If a matrix is stored in this format, it requires two steps
to access a partition of the matrix composed of a set of blocks,
such as B11, B12, B21 and B22 in Figure 1. The first step
is positioning the elements in these blocks by transforming
the block indices into a number of element indices, such as
B11 = {a11, . . . , a1b, a21, . . . , a2b, . . . , ab1, . . . , abb}. The
second step is reading the elements based on the transformed
element indices. These elements may dispersively stored
in a number of servers. It incurs a longer disk IO time
and heavy overheads of network communications to com-
pose a new RDD by these elements for further processing.
Therefore, IndexRowMatrix is not suitable to store interme-
diate matrices. Towards this end, we introduce the block-
oriented data structure BlockMatirx. It is a distributed matrix
where a block is a 〈Key,Value〉 pair 〈BlockID,BlockValue〉.
BlockID is the index of the block and BlockValue is the sub-
matrix at the given BlockID with size b × b. For exam-
ple, the block B11 in Figure 1 is organized as a RDD 〈11,
{a11, . . . , a1b, a21, . . . , a2b, . . . , ab1, ..., abb}〉. A matrix is
stored as a RDD that is composed by a number of blocks.
In this condition, a block can be accessed directly by its index.
Elements in a block are stored contiguous in memory, which
dramatically reduces the time of disk IOs and overheads of
network communications. Note that converting a distributed
matrix to a different format, like from IndexRowMatrix to

BlockMatrix, may require a global shufflewith network over-
head. It is important to covert the format of matrix data as less
as possible, especially for an iterative algorithm.

C. SOLVING L−1 AND U−1 INSTEAD OF L AND U
Previous LU decomposition based matrix inversion algo-
rithms, such as [7], [18], and [22], follow three steps: factor-
izing A as PA = LU , solving L−1 and U−1, and obtaining
A−1 = U−1L−1P. In contrast, we directly calculate L−1

and U−1 instead of L and U in each round of the recursion.
In this section, we illustrate the necessity and benefit of this
approach.

We have seen that if we calculate L andU at line 8 and 12 in
Algorithm 2, it is required to solve two linear equations below
to obtain two sub-matrices U2 and L2 with known matrix U1,
M3, L1, P1 and M2:[L̃2]1

...

[L̃2]n

U1 =

[M3]1

...

[M3]n


L1
(
[U2]1 ... [U2]n

)
=
(
[P1M2]1 ... [P1M2]n

)
.

where [∗]i and [∗]i are the ith row and column of a matrix,
respectively. If we follow the above process, we have to
access the matrix by row manner and column manner, which
will need to convert the BlockMatrix to IndexRowMatrix
in each iteration. However, if we calculate L−1 and U−1 at
line 8 and 12 in Algorithm 2, we can directly obtain L̃2 and
U2 by computing L̃2 = M3U

−1
1 and U2 = L−11 P1M2 with

matrix multiplication.
Another problem of traditional LU decomposition matrix

inversion resides in the last step of solving A−1 by
A−1 = L−1U−1P. If we only get L and U , it is required to
invert large matrices to obtain L−1 andU−1. For example, we
can partition the large scale L as

L =
(
L1 O
L2 L3

)
to solve for L−1 by leveraging the lower triangular matrix
characteristic of L:

L−1 =
(

L−11 O
−L−13 L2L

−1
1 L−13

)
.

For a large scale L, it requires a number of recursions to obtain
the whole L−1, which is a compute-intensive task. Obviously,
we can avoid this step by directly obtain L−1 and U−1.

D. HIGH-PERFORMANCE MATRIX MULTIPLICATION
Matrix multiplication operations are the major part of the
computations of the proposed algorithm. Therefore, imple-
menting a high-performance matrix multiplication is one
of the key points for large-scale matrix inversion. Towards
this end, we use a 1-D block-based approach to achieve
efficient matrix multiplication with low network communi-
cations overhead. Suppose that we will solve C = AB,
where A and B are both n × n matrices. We transform the
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matrices A and B from the original 2-D representation to
an 1-D representation as:

{A11,A12, . . . ,A1N }×N times, . . . ,

{AN1,AN2, . . . ,ANN }×N times

{B11,B21, . . . ,BN1, . . . ,B1N ,B2N , . . . ,BNN }×N times

The 1-D representations of A and B are organized as
two RDDs, FlatA and FlatB, respectively. Each element in
the RDD has a sequence number Seq. We perform a join
operation between these two RDDs to get a new RDD,
named FlatAFlatBPair . Each element in FlatAFlatBPair is
a key value pair 〈Seq, (Ai,k ,Bk,j)〉. Each map task multiplies
two sub-matrices as its output value and BlockID 〈Seq/N 2,
Seq/N%N 〉 as its output key. Each reduce task sums the
matrices to get the final result Ci,j =

∑N
k=1 Ai,kBk,j. With

customized partitioning functions, we can set the number of
parallel tasks as N 2. In general, it is larger than the total
number of cores; these parallel tasks could achieve better
dynamic load balancing and speed up recovery when a server
in the cluster fails or shows slow response.

E. EFFECTIVE PERMUTATION OF MATRIX
In the proposed algorithm, there are plenty of permutation
operations onmatrices to control the round-off error of matrix
inversion. We concentrate on two points to achieve effective
permutation of matrix: (1) an optimized data structure to
manage the permutationmatrix, and (2) effectively permuting
rows and columns of a given matrix.

The permutation matrix P sized n × n has precisely one
entry whose value is 1 in each row and each column, and its
other entries are zero. Based on this characteristic, we utilize
an array-based data structure ArrayP = [arrayPi]16i6n,
where arrayPi = j if pi,j = 1, to store P. This array-based
data structure saves the space cost by using only n elements
to store an n× nmatrix, as well as facilitates the permutation
operations below.

As mentioned before, the intermediate matrices to be
computed in the proposed algorithm are stored in a block-
based format. It requires three steps to perform the matrix
permutation in the traditional way: (1) transforming the
block-based format data to row-major/column-major order
data, (2) updating the row/column indices for interchanging
row/column, and (3) transforming the row-major/column-
major order data to block-based format data. In the above
three steps, there are several rounds of shuffle operations,
which will cause too many overheads of disk IOs and net-
work communications for permuting a large-scale matrix.
To improve performance, we introduce a method to per-
form the row permutation B = PA directly on the block-
based data structure. We compose a RDD RA to store blocks
of the original matrix on row-major order. Each block is
represented as a 〈Key,Value〉 pair 〈BlockID,BlockValue〉.
Then, we apply a flatMap transformation on RA to obtain
another RDD Ã. The first step in flatMap is splitting each
block into a set of rows represented as 〈Key,Value〉 pairs

〈BlockID, (RowIndex,ValueOfRowPiece)〉, where RowIndex
is the index r of a row and ValueOfRowPiece is the set of
elements in the row. The second step is finding the index r̃ in
ArrayP such that arrayPr̃ = r , and updating the index of each
row from r to r̃ . After obtaining the new index of each row, we
can get the newBlockID of the row piece. The column index
of newBlockID is the same as previous BlockID because the
row permutation does not change the column index of each
element. The row index newBlockID can be easily obtained
by r̃/b. Finally, we can obtain B by performing groupByKey
transformation on Ã to combine these row pieces to a new
BlockValue. In the above process, there is only one shuffle in
the groupByKey transformation.

From the equation of column permutation B = AP =
(PTAT )T , we can use the row permutation to achieve column
permutation. The only thing we need to consider is obtaining
PT from P. From the array representation of P, ArrayP =
[arrayPi]16i6n, we can simply get PT by swapping the index
i and the value j. After this, we can follow the above row
permutation process to get the result of column permutation.

F. REDUCTION OF SPACE COMPLEXITY
In general, most of traditionalmethods of parallelizing the LU
factorization are based on a blocked right-looking approach,
which is based on partitioning a large-scale matrix M that
cannot be computed on a single server to blocks as:(

M1 M2
M3 M4

)
=

(
L1 O
L2 L3

)(
U1 U2
O U3

)
.

To make it computable, the size of M1 is set to be b × b,
where b is the size of a basic block that can be decomposed
on a single server. This block partition approach leads to a
recursive algorithm: (1) solving L1 and U1 by factorizing
M1 = L1U1, (2) obtaining L2 and U2 by solving M3 = L2U1
and M2 = L1U2, respectively, and (3) defining a new matrix
M̃ as M̃ = M4 − L2U2 and recursively factorizing M̃ to
obtain L2 and U2. For simplicity, we assume that the order
of M is 2kb, where k is a natural number. In each iteration,
we will obtain a newmatrix M̃ . If it is small enough, M̃ can be
updated in the memory. However, in the process of inverting
a large-scale matrix, M̃ is so large that has to be stored into
the hard disk. It makes the size of M̃ to be an important factor
of algorithm performance. The size of M̃ is

S =
N−1∑
r=1

r2b2 =
(N − 1)N (2N − 1)

6
b2,

where N = 2k . It means that the space complexity of the
blocked right-looking based method is O(N 3).
In contrast, in our proposed Algorithm 2, the space cost of

M̃ to invert a matrix M sized 2kb× 2kb is

S(k) = S(k − 1)+ (2k−1)2b2 + S(k − 2)+ (2k−2)2b2

+ . . .+ S(2)+ (22)2b2 + S(1)+ 22b2 + b2

= 2S(k − 1)+ 4k−1b2.
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From the above equation, we have

S(k)−
1
2
4kb2 = 2(S(k − 1)−

1
2
4k−1b2).

In the above equation, S(1) is the size of the intermediate
data to invert matrix M sized 2b × 2b, which equals to b2.
If we let

T (k) = S(k)−
1
2
4kb2,

we have

T (1) = S(1)−
1
2
4b2 = −b2.

Then, we have:

T (k) = −2k−1b2

S(k) = (
1
2
4kb2 − 2k−1)b2 =

1
2
(N 2
− N )b2.

It indicates that the space complexity of our proposed
algorithm is O(N 2), which is much smaller than that of the
blocked right-looking based method and thus helps improve
the performance.

V. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL ENVIRONMENT
We implement our algorithm (later called SparkInverse) on
Spark 1.3, the program ofMapReduce-based algorithm based
on the source code provided in [7] (later called MRInverse)
on Hadoop 2.6, and a program (later called MPIInverse)
based on ScaLAPACK library and MPICH2 MPI platform.
All experiments were performed on a cluster composed of
commodity servers connected by Gigabit switches, which are
deployed in a data center with well designed architecture
and optimized network [23]. Each server has 64GB mem-
ory, two 2.1GHz Intel Xeon CPUs with 12 physical cores,
eight 7200 RPM hard disks, and one Gigabit ethernet card.

TABLE 1. Input matrices.

To investigate the performance of the algorithms, we gen-
erated 4 large-scale matrices of uniformly distributed random
numbers between 0 and 1. Details of the matrices are pre-
sented in Table 1, which shows the order of each matrix, the
size of the CSV file used as the input for SparkInverse, and
the size of the binary file used as the input for the comparative
MRInverse andMPIInverse. All files are stored in HDFSwith
the replication factor of 3.

FIGURE 2. Performance evaluation.

B. PERFORMANCE COMPARISON
Before evaluating the performance of algorithms, we verify
the precision of MRInverse, SparkInverse and MPIInverse
by computing R = In − MM−1 for M1, M2 and M3.
The result shows that all elements in R are less than 10−7,
i.e., this validates the implementations with sufficient
precision.

After validating the algorithms, we execute MRInverse,
SparkInverse and MPIInverse on the cluster with different
conditions to compare the performance. Figure 2 shows the
results. The white, gray and dark bars are the results of
execution time of MRInverse, SparkInverse, andMPIInverse,
respectively. The first and second groups of three bars are
the results of programs running on a small cluster with
4 servers and a large cluster with 7 servers, respectively. All
servers in both small and large clusters are fully occupied by a
single program to be evaluated during the testing. The results
show that the SparkInverse outperforms the MRInverse for
both small and large clusters. The SparkInverse performs
even better when the input matrix becomes larger. This is
attributed to the fact that MRInverse generates a large amount
of intermediate data, and has to input from and output to
hard disks during the computing. In the condition of fully
occupied cluster environment, MPIInverse exhibits better
performance as compared to MRInverse and SparkInverse.
As compared to MPIInverse, our algorithm achieves compa-
rable performance. It means that we can take advantages of
fault-tolerance, convenient programming and enhanced soft-
ware ecosystem by using the Spark framework with accept-
able performance degradation.

In practice, a cluster composed of commodity servers can-
not be occupied by a single program and usually experiences
unpredictable failures. To evaluate this situation, we create
a simulated environment by generating background network
traffic in the large cluster and computing workload on one
server. The third group of three bars in Figure 2 shows the
results in this situation. The percentages of increased execu-
tion time on M3, 76%, 40% and 26%, show the significant
performance degradations of MRInverse and MPIInverse as
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compared to SparkInverse. The MPI program has to transfer
a large amount of data on the network and cannot reschedule
the computing tasks if any server crashes or shows slow
responses. The MRInverse algorithm uses a static data par-
titioning approach to distribute tasks on servers, and can-
not adapt the dynamic workloads on servers. In contrast,
SparkInverse utilizes the capability of the speculative exe-
cution mechanism of the Spark framework that automati-
cally handles the straggler of network transmitting and data
computing.

For the matrix M4 of order 102400, the MRInverse failed
to invert it on the 7-node cluster with a ‘Java heap space’ error
when it runs the last ‘LU Inverse’ job. Meanwhile, the Spark-
Inverse spent 8 hours 30 minutes and 5 hours 42 minutes
to solve the inversion of M4 with precision of 10−5 on
4 and 7 servers, respectively. This demonstrates the advan-
tage of our algorithm for inverting extra-large matrices on
distributed computing environment.

FIGURE 3. The scalability of the proposed algorithm.

C. SCALABILITY AND BOTTLENECK ANALYSIS
To evaluate the scalability of the proposed algorithm, we run
the Spark program to invert M1, M2 and M3 with a varied
number of servers. We configured the number of executors
from 1 to 7, implying that the program can use a range of
physical cores from 12 to 84. Figure 3 shows the result. The
x axis is the number of cores and the y axis is the ratio of the
execution time of each test to that of the test with the max-
imum number of cores. We can see that the execution time
decreases when the available computing resource increases.
Results show that the algorithm achieves good scalability
when the number of cores is smaller than 48. However, we
also note that there is a deviation from the expected line
when the number of cores is larger than 48. To investigate
the cause of this deviation, we broke down the execution time
of the whole process of inverting the matrix. As we know, the
computing time, the disk IO time and the network IO time are
the major parts of the total execution time of big data process-
ing jobs. For Spark, the distributed memory data abstraction
reduces the impact of the disk IO time on performance.

TABLE 2. Impact of fetch remote data.

So, we detailed the data size and the time of reading remote
data on the shuffle process of computing the multiplication of
twomatrices of order 20480. The results are shown in Table 2,
in which the columns from left to right are the number of
nodes, the accumulated CPU time, the time of pulling data
from remote nodes in shuffle, the size of data read from
remote nodes, the ratio of the remote data to the total shuffled
data, and the ratio of time of remote pulling to the total shuffle
time. Note that the accumulated CPU time is not the execution
time. It is the accumulated CPU time of each task to get
the shuffle data for the next reduce operation. We can see
that the accumulated CPU time increases when the number
of nodes increases because there are more data to be read
from the remote nodes when more nodes are involved in the
computing. In other words, the time of reading data from the
remote nodes occupies the most part of the total shuffle time,
and thus degrades the scalability of our algorithm when the
number of nodes increases.

VI. CONCLUSION AND FUTURE WORK
Large-scale matrix inversion is a fundamental operation for
big data processing tasks, such as web-scale graph analysis
and personalized recommendation. In this paper, we have
presented a scalable and efficient matrix inversion algorithm
for large-scale matrices and its implementation on Spark.
We use a block-recursive method to breakdown the huge
computation into a set of small partitions to compute the LU
decomposition. Unlike traditional LU decomposition based
matrix inversion algorithms, we solve L−1 and U−1 instead
of L and U to reduce the computation and space complexity.
The experimental evaluation has demonstrated that the pro-
posed algorithm remarkably outperforms the state-of-the-art
MapReduce-based implementation and exhibits the reliabil-
ity and fault-tolerance capabilities as compared to the MPI
program. The analysis of evaluation results on clusters with
varied sizes has also showed that our algorithm achieves good
scalability.

In terms of the future work, we consider two directions:
(1) optimizing the proposed algorithm and implementation
by decreasing the communications cost with new technolo-
gies like Tachyon [24], and (2) designing and implementing
new linear algebra software libraries based on the algorithm
implementation for large-scale matrix computation including
singular value decomposition and solving eigenvectors and
eigenvalues.
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